
bigml-java Documentation
Release master

Jun 25, 2020

Contents

1 Additional Information 3
1.1 Introduction . 3
1.2 Quick Start . 5
1.3 Fields Structure . 7
1.4 Resources . 59
1.5 Whizzml Resources . 79
1.6 Local Resources . 83
1.7 Running the tests . 103

i

ii

bigml-java Documentation, Release master

In this tutorial, you will learn how to use the BigML bindings for Java.

Contents 1

bigml-java Documentation, Release master

2 Contents

CHAPTER 1

Additional Information

For additional information about the API, see the BigML developer’s documentation.

1.1 Introduction

BigML makes machine learning easy by taking care of the details required to add data-driven decisions and predictive
power to your company. Unlike other machine learning services, BigML creates beautiful predictive models that can
be easily understood and interacted with.

These BigML Java bindings allow you to interact with BigML.io, the API for BigML. You can use it to easily create,
retrieve, list, update, and delete BigML resources (i.e., sources, datasets, models and, predictions).

This module is licensed under the Apache License, Version 2.0.

1.1.1 Support

Please report problems and bugs to our BigML Java Binding issue tracker.

Discussions about the different bindings take place in the general BigML mailing list. Or join us in our Campfire
chatroom.

1.1.2 Requirements

JVM 1.6 and above are currently supported by these bindings.

You will also need maven to build the package. If you are new to maven, please refer to Maven Getting Started
Guide.

1.1.3 Installation

To use the latest stable release, include the following maven dependency in your project’s pom.xml.

3

https://bigml.com/api
https://bigml.com
https://bigml.com/gallery/models
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/bigmlcom/bigml-java/issues
http://groups.google.com/group/bigml
https://bigmlinc.campfirenow.com/f20a0%3E
https://bigmlinc.campfirenow.com/f20a0%3E
https://maven.apache.org/guides/getting-started/index.html%3E
https://maven.apache.org/guides/getting-started/index.html%3E

bigml-java Documentation, Release master

<dependency>
<groupId>org.bigml</groupId>
<artifactId>bigml-binding</artifactId>
<version>1.8.13</version>

</dependency>

You can also download the development version of the bindings directly from the Git repository

$ git clone git://github.com/bigmlcom/bigml-java.git

1.1.4 Authentication

All the requests to BigML.io must be authenticated using your username and API key and are always transmitted over
HTTPS.

This module will look for your username and API key in the src/main/resources/binding.properties
file. Alternatively, you can respectively set the JVM parameters BIGML_USERNAME and BIGML_API_KEY with -D
or use envronment variables.

With that set up, connecting to BigML is a breeze. First, import BigMLClient:

import org.bigml.binding.BigMLClient;

then:

BigMLClient api = new BigMLClient();

Otherwise, you can initialize directly when instantiating the BigMLClient class as follows:

BigMLClient api = new BigMLClient(
"myusername", "ae579e7e53fb9abd646a6ff8aa99d4afe83ac291", null);

These credentials will allow you to manage any resource in your user environment.

In BigML a user can also work for an organization. In this case, the organization administrator should previously
assign permissions for the user to access one or several particular projects in the organization. Once permissions
are granted, the user can work with resources in a project according to his permission level by creating a special
constructor for each project. The connection constructor in this case should include the project ID:

BigMLClient api = new BigMLClient(
"myusername", "ae579e7e53fb9abd646a6ff8aa99d4afe83ac291",
"project/53739b98d994972da7001d4a", null, null);

If the project used in a connection object does not belong to an existing organization but is one of the projects under the
user’s account, all the resources created or updated with that connection will also be assigned to the specified project.

When the resource to be managed is a project itself, the connection needs to include the corresponding
organization ID:

BigMLClient api = new BigMLClient(
"myusername", "ae579e7e53fb9abd646a6ff8aa99d4afe83ac291",
"project/53739b98d994972da7001d4a",
"organization/53739b98d994972da7025d4a", null);

4 Chapter 1. Additional Information

https://bigml.com/account/apikey

bigml-java Documentation, Release master

1.1.5 Alternative domains

For Virtual Private Cloud setups, you can change the remote server URL to the VPC particular one by either setting the
BIGML_URL in binding.properties or in the JVM environment. By default, they have the following values:

BIGML_URL=https://bigml.io/andromeda/

If you are in Australia or New Zealand, you can change them to:

BIGML_URL=https://au.bigml.io/andromeda/

The corresponding SSL REST calls will be directed to your private domain henceforth.

1.2 Quick Start

This chapter shows how to create a model from a remote CSV file and use it to make a prediction for a new single
instance.

Imagine that you want to use this csv file containing the Iris flower dataset to predict the species of a flower whose
sepal length is 5 and whose sepal width is 2.5. A preview of the dataset is shown below. It has 4 numeric
fields: sepal length, sepal width, petal length, petal width and a categorical field: species.
By default, BigML considers the last field in the dataset as the objective field (i.e., the field that you want to generate
predictions for).

sepal length,sepal width,petal length,petal width,species
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
...
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
...
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica

The typical process you need to follow when using BigML is to:

1. open a connection to BigML API with your user name and API Key

2. create a source by uploading the data file

3. create a dataset (a structured version of the source)

4. create a model using the dataset

5. finally, use the model to make a prediction for some new input data.

As you can see, all the steps above share some similarities, in that each one consists of creating a new BigML resource
from some other BigML resource. This makes the BigML API very easy to understand and use, since all available
operations are orthogonal to the kind of resource you want to create.

All API calls in BigML are asynchronous, so you will not be blocking your program while waiting for the network
to send back a reply. This means that at each step you need to wait for the resource creation to finish before you can
move on to the next step.

This can be exemplified with the first step in our process, creating a source by uploading the data file.

1.2. Quick Start 5

https://bigml.com/pricing/vpc
https://static.bigml.com/csv/iris.csv
http://en.wikipedia.org/wiki/Iris_flower_data_set

bigml-java Documentation, Release master

First of all, you need to create the connecting to BigML:

import org.bigml.binding.BigMLClient;

// Create BigMLClient with the properties in binding.properties
BigMLClient api = new BigMLClient();

You will need to create then a Source object to encapsulate all information that will be used to create it correctly,
i.e., an optional name for the source and the data file to use:

JSONObject args = null;
JSONObject source = api.createRemoteSource(

"https://static.bigml.com/csv/iris.csv",
"Iris Source", args);

If you do not want to use a remote data file, as you are doing in this example, you can use a local data file by replacing
the last line above, as shown here:

JSONObject args = null;
JSONObject source = api.createSource(

"./data/iris.csv", "Iris Source", args);

That’s all! BigML will create the source, as per our request, and automatically list it in the BigML Dashboard. As
mentioned, though, you will need to monitor the source status until it is fully created before you can move on to the
next step, which can be easily done like this:

while (!api.sourceIsReady(source))
Thread.sleep(1000);

The steps described above define a generic pattern of how to create the resources you need next, i.e., a Dataset, a
Model, and a Prediction. As an additional example, this is how you create a Dataset from the Source you
have just created:

// --- create a dataset from the previous source ---
// Dataset object which will encapsulate the dataset information
JSONObject args = null;
args.put("name", "my new dataset");

JSONObject dataset = api.createDataset(
(String)source.get("resource"), args, null, null);

while (!api.datasetIsReady(dataset))
Thread.sleep(1000);

You can easily complete the crreation of a prediction following these steps:

JSONObject model = api.createModel(
(String)dataset.get("resource"), args, null, null);

while (!api.modelIsReady(model))
Thread.sleep(1000);

JSONObject inputData = new JSONObject();
inputData.put("sepal length", 5);
inputData.put("sepal width", 2.5);

JSONObject prediction = api.createPrediction(

(continues on next page)

6 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

(String)model.get("resource"), inputData, true,
args, null, null);

After this quick introduction, it should be now easy to follow and understand the full code that is required to create
a prediction starting from a data file. Make sure you have properly installed BigML Java bindings as detailed in
Requirements.

You can then get the prediction result:

prediction = api.getPrediction(prediction);

and print the result:

String output = (String)Utils.getJSONObject(
prediction, "object.output");

System.out.println("Prediction result: " + output);

Prediction result: Iris-virginica

and also generate an evaluation for the model by using:

JSONObject testSource = api.createSource("./data/test_iris.csv",
"Test Iris Source", args);

while (!api.sourceIsReady(source)) Thread.sleep(1000);

JSONObject testDataset = api.createDataset(
(String)testSource.get("resource"), args, null, null);

while (!api.datasetIsReady(dataset)) Thread.sleep(1000);

JSONObject evaluation = api.createEvaluation(
(String)model.get("resource"), (String)dataset.get("resource"),
args, null, null);

Setting the storage argument in the api client instantiation:

BigMLClient api = new BigMLClient(
"myusername", "ae579e7e53fb9abd646a6ff8aa99d4afe83ac291", "./storage");

all the generated, updated or retrieved resources will be automatically saved to the chosen directory.

You can also find a sample API client code from here.

1.3 Fields Structure

1.3.1 Source

BigML automatically generates identifiers for each field. The following example shows how to retrieve the fields, ids,
and its types that have been assigned to a source:

source = api.getSource(source);
JSONObject fields = (JSONObject) Utils.getJSONObject(

source, "object.fields");

1.3. Fields Structure 7

intro.html#requirements
https://github.com/bigmlcom/bigml-java/blob/master/samples/BigML-Sample-Client/src/main/java/org/bigml/sample/BigMLSampleClient.java

bigml-java Documentation, Release master

source fields object:

{
"000000":{

"name":"sepal length",
"column_number":0,
"optype":"numeric",
"order":0

},
"000001":{

"name":"sepal width",
"column_number":1,
"optype":"numeric",
"order":1

},
"000002":{

"name":"petal length",
"column_number":2,
"optype":"numeric",
"order":2

},
"000003":{

"name":"petal width",
"column_number":3,
"optype":"numeric",
"order":3

},
"000004":{

"column_number":4,
"name":"species",
"optype":"categorical",
"order":4,
"term_analysis":{

"enabled":true
}

}
}

When the number of fields becomes very large, it can be useful to exclude or filter them. This can be done using a
query string expression, for instance:

source = api.getSource(source, "limit=10&order_by=name");

would include in the retrieved dictionary the first 10 fields sorted by name.

1.3.2 Dataset

If you want to get some basic statistics for each field you can retrieve the fields from the dataset as follows to get a
dictionary keyed by field id:

dataset = api.getDataset(dataset);
JSONOoject fields = (JSONObject) Utils.getJSONObject(

dataset, "object.fields");

dataset fields object:

8 Chapter 1. Additional Information

bigml-java Documentation, Release master

{
"000000": {

"column_number": 0,
"datatype": "double",
"name": "sepal length",
"optype": "numeric",
"order": 0,
"preferred": true,
"summary": {

"bins": [
[4.3, 1],
[4.425, 4],

...snip...

[7.9, 1]
],
"kurtosis": -0.57357,
"maximum": 7.9,
"mean": 5.84333,
"median": 5.8,
"minimum": 4.3,
"missing_count": 0,
"population": 150,
"skewness": 0.31175,
"splits": [

4.51526,
4.67252,

...snip...

7.64746
],
"standard_deviation": 0.82807,
"sum": 876.5,
"sum_squares": 5223.85,
"variance": 0.68569

}
},

...snip...

"000004": {

...snip...

}
}

The field filtering options are also available using a query string expression, for instance:

dataset = api.getDataset(dataset, "limit=20");

limits the number of fields that will be included in dataset to 20.

1.3. Fields Structure 9

bigml-java Documentation, Release master

1.3.3 Model

One of the greatest things about BigML is that the models that it generates for you are fully white-boxed. To get the
explicit tree-like predictive model for the example above:

model = api.getModel(model);
JSONObject tree = (JSONObject) Utils.getJSONObject(

model, "object.model.root");

model tree object:

{
"children":[{

"children":[{
"children":[{

"confidence":0.91799,
"count":43,
"id":3,
"objective_summary":{

"categories":[
[

"Iris-virginica",
43

]
]

},
"output":"Iris-virginica",
"predicate":{

"field":"000002",
"operator":">",
"value":4.85

}
}, {

"children":[{
"confidence":0.20654,
"count":1,
"id":5,
"objective_summary":{

"categories":[
[

"Iris-versicolor",
1

]
]

},
"output":"Iris-versicolor",
"predicate":{

"field":"000001",
"operator":">",
"value":3.1

}
},

...snip...

},

...snip...
(continues on next page)

10 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

},

...snip...

},

...snip...
}

(Note that we have abbreviated the output in the snippet above for readability: the full predictive model yo’ll get is
going to contain much more details).

Again, filtering options are also available using a query string expression, for instance:

model = api.getModel(model, "limit=5");

limits the number of fields that will be included in model to 5.

1.3.4 Evaluation

The predictive performance of a model can be measured using many different measures. In BigML these measures
can be obtained by creating evaluations. To create an evaluation you need the id of the model you are evaluating and
the id of the dataset that contains the data to be tested with. The result is shown as:

evaluation = api.getEvaluation(evaluation);
JSONObject result = (JSONObject) Utils.getJSONObject(evaluation, "object.result");

evaluation result object:

{
"class_names":[

"Iris-setosa",
"Iris-versicolor",
"Iris-virginica"

],
"mode":{

"accuracy":0.33333,
"average_f_measure":0.16667,
"average_phi":0,
"average_precision":0.11111,
"average_recall":0.33333,
"confusion_matrix":[

[50, 0, 0],
[50, 0, 0],
[50, 0, 0]

],
"per_class_statistics":[

{
"accuracy":0.3333333333333333,
"class_name":"Iris-setosa",
"f_measure":0.5,
"phi_coefficient":0,
"precision":0.3333333333333333,
"present_in_test_data":true,

(continues on next page)

1.3. Fields Structure 11

bigml-java Documentation, Release master

(continued from previous page)

"recall":1.0
},
{

"accuracy":0.6666666666666667,
"class_name":"Iris-versicolor",
"f_measure":0,
"phi_coefficient":0,
"precision":0,
"present_in_test_data":true,
"recall":0.0

},
{

"accuracy":0.6666666666666667,
"class_name":"Iris-virginica",
"f_measure":0,
"phi_coefficient":0,
"precision":0,
"present_in_test_data":true,
"recall":0.0

}
]

},
"model":{

"accuracy":1,
"average_f_measure":1,
"average_phi":1,
"average_precision":1,
"average_recall":1,
"confusion_matrix":[

[50, 0, 0],
[0, 50, 0],
[0, 0, 50]

],
"per_class_statistics":[

{
"accuracy":1.0,
"class_name":"Iris-setosa",
"f_measure":1.0,
"phi_coefficient":1.0,
"precision":1.0,
"present_in_test_data":true,
"recall":1.0

},
{

"accuracy":1.0,
"class_name":"Iris-versicolor",
"f_measure":1.0,
"phi_coefficient":1.0,
"precision":1.0,
"present_in_test_data":true,
"recall":1.0

},
{

"accuracy":1.0,
"class_name":"Iris-virginica",
"f_measure":1.0,
"phi_coefficient":1.0,

(continues on next page)

12 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"precision":1.0,
"present_in_test_data":true,
"recall":1.0

}
]

},
"random":{

"accuracy":0.28,
"average_f_measure":0.27789,
"average_phi":-0.08123,
"average_precision":0.27683,
"average_recall":0.28,
"confusion_matrix":[

[14, 19, 17],
[19, 10, 21],
[15, 17, 18]

],
"per_class_statistics":[

{
"accuracy":0.5333333333333333,
"class_name":"Iris-setosa",
"f_measure":0.2857142857142857,
"phi_coefficient":-0.06063390625908324,
"precision":0.2916666666666667,
"present_in_test_data":true,
"recall":0.28

},
{

"accuracy":0.4933333333333333,
"class_name":"Iris-versicolor",
"f_measure":0.20833333333333331,
"phi_coefficient":-0.16357216402190614,
"precision":0.21739130434782608,
"present_in_test_data":true,
"recall":0.2

},
{

"accuracy":0.5333333333333333,
"class_name":"Iris-virginica",
"f_measure":0.33962264150943394,
"phi_coefficient":-0.019492029389636262,
"precision":0.32142857142857145,
"present_in_test_data":true,
"recall":0.36

}
]

}
}

where two levels of detail are easily identified. For classifications, the first level shows these keys:

• class_names: A list with the names of all the categories for the objective field (i.e., all the classes)

• mode: A detailed result object. Measures of the performance of the classifier that predicts the mode class for all
the instances in the dataset

• model: A detailed result object.

• random: A detailed result object. Measures the performance of the classifier that predicts a random class for

1.3. Fields Structure 13

bigml-java Documentation, Release master

all the instances in the dataset.

and the detailed result objects include accuracy, average_f_measure, average_phi,
average_precision, average_recall, confusion_matrix and per_class_statistics.

For regressions first level will contain these keys:

• mean: A detailed result object. Measures the performance of the model that predicts the mean for all the
instances in the dataset.

• model: A detailed result object.

• random: A detailed result object. Measures the performance of the model that predicts a random class for all
the instances in the dataset.

where the detailed result objects include mean_absolute_error, mean_squared_error and r_squared
(refer to developers documentation for more info on the meaning of these measures.

1.3.5 Cluster

For unsupervised learning problems, the cluster is used to classify in a limited number of groups your training data.
The cluster structure is defined by the centers of each group of data, named centroids, and the data enclosed in the
group. As for in the model’s case, the cluster is a white-box resource and can be retrieved as a JSON:

cluster = api.getCluster("cluster/56c42ea47e0a8d6cca0151a0");
JSONObject result = (JSONObject) Utils.getJSONObject(cluster, "object");

cluster object object:

{
"balance_fields":true,
"category":0,
"cluster_datasets":{},
"cluster_models":{},
"clusters":{

"clusters":[{
"center":{

"000000":6.262,
"000001":2.872,
"000002":4.906,
"000003":1.676,
"000004":"Iris-virginica"

},
"count":100,
"distance":{

"bins":[
[0.03935, 1],
[0.04828, 1],
[0.06093, 1],
...snip...
[0.47935, 1]

],
"maximum":0.47935,
"mean":0.21705,
"median":0.20954,
"minimum":0.03935,
"population":100,
"standard_deviation":0.0886,

(continues on next page)

14 Chapter 1. Additional Information

https://bigml.com/developers/evaluations

bigml-java Documentation, Release master

(continued from previous page)

"sum":21.70515,
"sum_squares":5.48833,
"variance":0.00785

},
"id":"000000",
"name":"Cluster 0"

}, {
"center":{

"000000":5.006,
"000001":3.428,
"000002":1.462,
"000003":0.246,
"000004":"Iris-setosa"

},
"count":50,
"distance":{

"bins":[
[0.01427, 1],
[0.02279, 1],
...snip...
[0.41736, 1]

],
"maximum":0.41736,
"mean":0.12717,
"median":0.113,
"minimum":0.01427,
"population":50,
"standard_deviation":0.08521,
"sum":6.3584,
"sum_squares":1.16432,
"variance":0.00726

},
"id":"000001",
"name":"Cluster 1"

}],
"fields":{

...snip...
}

},
"code":200,
"columns":5,
"created":"2016-02-17T08:26:12.583000",
"credits":0.017581939697265625,
"credits_per_prediction":0.0,
"critical_value":5,
"dataset":"dataset/56c42ea07e0a8d6cca01519b",
"dataset_field_types":{

"categorical":1,
"datetime":0,
"effective_fields":5,
"items":0,
"numeric":4,
"preferred":5,
"text":0,
"total":5

},
"dataset_status":true,

(continues on next page)

1.3. Fields Structure 15

bigml-java Documentation, Release master

(continued from previous page)

"dataset_type":0,
"description":"",
"excluded_fields":[],
"field_scales":{},
"fields_meta":{

"count":5,
"limit":1000,
"offset":0,
"query_total":5,
"total":5

},
"input_fields":[

"000000",
"000001",
"000002",
"000003",
"000004"

],
"k":2,
"locale":"en_US",
"max_columns":5,
"max_rows":150,
"model_clusters":false,
"name":"Iris Source dataset's cluster",
"number_of_batchcentroids":0,
"number_of_centroids":0,
"number_of_public_centroids":0,
"out_of_bag":false,
"price":0.0,
"private":true,
"project":null,
"range":[

1,
150

],
"replacement":false,
"resource":"cluster/56c42ea47e0a8d6cca0151a0",
"rows":150,
"sample_rate":1.0,
"scales":{

"000000":0.18941532079904913,
"000001":0.35975000221609077,
"000002":0.08884141152890178,
"000003":0.20571391803576422,
"000004":0.15627934742019414

},
"shared":false,
"size":4609,
"source":"source/56c42e9f8a318f66df007548",
"source_status":true,
"status":{

"code":5,
"elapsed":1213,
"message":"The cluster has been created",
"progress":1.0

},
"subscription":false,

(continues on next page)

16 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"summary_fields":[],
"tags":[],
"updated":"2016-02-17T08:26:24.259000",
"white_box":false

}

(Note that we have abbreviated the output in the snippet above for readability: the full predictive cluster yo’ll get is
going to contain much more details).

1.3.6 Anomaly Detector

For anomaly detection problems, BigML uses iforest as an unsupervised kind of model that detects anomalous data in
a dataset. The information it returns encloses a top_anomalies block that contains a list of the most anomalous
points. For each, we capture a score from 0 to 1. The closer to 1, the more anomalous. We also capture the row
which gives values for each field in the order defined by input_fields. Similarly we give a list of importances
which match the row values. These importances tell us which values contributed most to the anomaly score. Thus,
the structure of an anomaly detector is similar to:

anomaly = api.getAnomaly("anomaly/56c432728a318f66e4012f82");
JSONObject object = (JSONObject) Utils.getJSONObject(anomaly, "object");

anomaly object object:

{
"anomaly_seed":"2c249dda00fbf54ab4cdd850532a584f286af5b6",
"category":0,
"code":200,
"columns":5,
"constraints":false,
"created":"2016-02-17T08:42:26.663000",
"credits":0.12307357788085938,
"credits_per_prediction":0.0,
"dataset":"dataset/56c432657e0a8d6cd0004a2d",
"dataset_field_types":{

"categorical":1,
"datetime":0,
"effective_fields":5,
"items":0,
"numeric":4,
"preferred":5,
"text":0,
"total":5

},
"dataset_status":true,
"dataset_type":0,
"description":"",
"excluded_fields":[],
"fields_meta":{

"count":5,
"limit":1000,
"offset":0,
"query_total":5,
"total":5

},
"forest_size":128,

(continues on next page)

1.3. Fields Structure 17

bigml-java Documentation, Release master

(continued from previous page)

"id_fields":[],
"input_fields":[

"000000",
"000001",
"000002",
"000003",
"000004"

],
"locale":"en_US",
"max_columns":5,
"max_rows":150,
"model":{

"constraints":false,
"fields":{

...snip...
},
"forest_size":128,
"kind":"iforest",
"mean_depth":9.557347074468085,
"sample_size":94,
"top_anomalies":[{

"importance":[
0.22808,
0.23051,
0.21026,
0.1756,
0.15555

],
"row":[

7.9,
3.8,
6.4,
2.0,
"Iris-virginica"

],
"row_number":131,
"score":0.58766

},
{

"importance":[
0.21552,
0.22631,
0.22319,
0.1826,
0.15239

],
"row":[

7.7,
3.8,
6.7,
2.2,
"Iris-virginica"

],
"row_number":117,
"score":0.58458

},
...snip...

(continues on next page)

18 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

{
"importance":[

0.23113,
0.15013,
0.17312,
0.20304,
0.24257

],
"row":[

4.9,
2.5,
4.5,
1.7,
"Iris-virginica"

],
"row_number":106,
"score":0.54096

}],
"top_n":10,
"trees":[{

"root":{
"children":[{

"children":[{
"children":[{

"children":[{
"children":[{

"population":1,
"predicates":[{

"field":"00001f",
"op":">",
"value":35.54357

}]
}, {
...snip...
}, {

"population":1,
"predicates":[{

"field":"00001f",
"op":"<=",
"value":35.54357

}]
}],
"population":2,
"predicates":[{

"field":"000005",
"op":"<=",
"value":1385.5166

}]
}],
"population":3,
"predicates":[{

"field":"000020",
"op":"<=",
"value":65.14308

}, {
"field":"000019",
"op":"=",

(continues on next page)

1.3. Fields Structure 19

bigml-java Documentation, Release master

(continued from previous page)

"value":0
}]

}],
...snip...
"population":105,
"predicates":[{

"field":"000017",
"op":"<=",
"value":13.21754

}, {
"field":"000009",
"op":"in",
"value":["0"]

}]
}],
"population":126,
"predicates":[true, {

"field":"000018",
"op":"=",
"value":0

}]
},

},
"training_mean_depth":11.071428571428571

}
},
"name":"Iris Source dataset's anomaly detector",
"number_of_anomalyscores":0,
"number_of_batchanomalyscores":0,
"number_of_public_anomalyscores":0,
"ordering":0,
"out_of_bag":false,
"price":0.0,
"private":true,
"project":null,
"range":[

1,
150

],
"replacement":false,
"resource":"anomaly/56c432728a318f66e4012f82",
"rows":150,
"sample_rate":1.0,
"sample_size":94,
"shared":false,
"size":4609,
"source":"source/56c432638a318f66e4012f7b",
"source_status":true,
"status":{

"code":5,
"elapsed":617,
"message":"The anomaly detector has been created",
"progress":1.0

},
"subscription":false,
"tags":[],
"top_n":10,

(continues on next page)

20 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"updated":"2016-02-17T08:42:42.238000",
"white_box":false

}

(Note that we have abbreviated the output in the snippet above for readability: the full anomaly detector yo’ll get is
going to contain much more details).

The trees list contains the actual isolation forest, and it can be quite large usually. That’s why, this part of the re-
source should only be included in downloads when needed. Each node in an isolation tree can have multiple predicates.
For the node to be a valid branch when evaluated with a data point, all of its predicates must be true.

1.3.7 Samples

To provide quick access to your row data you can create a sample. Samples are in-memory objects that can be
queried for subsets of data by limiting their size, the fields or the rows returned. The structure of a sample would be::

Samples are not permanent objects. Once they are created, they will be available as long as GETs are requested within
periods smaller than a pre-established TTL (Time to Live). The expiration timer of a sample is reset every time a new
GET is received.

If requested, a sample can also perform linear regression and compute Pearson’s and Spearman’s correlations for either
one numeric field against all other numeric fields or between two specific numeric fields.

1.3.8 Correlations

A correlation resource contains a series of computations that reflect the degree of dependence between the field
set as objective for your predictions and the rest of fields in your dataset. The dependence degree is obtained by com-
paring the distributions in every objective and non-objective field pair, as independent fields should have probabilistic
independent distributions. Depending on the types of the fields to compare, the metrics used to compute the correlation
degree will be:

• for numeric to numeric pairs: Pearson’s and Spearman’s correlation coefficients.

• for numeric to categorical pairs: One-way Analysis of Variance, with the categorical field as the predictor
variable.

• for categorical to categorical pairs: contingency table (or two-way table), Chi-square test of independence , and
Cramer’s V and Tschuprow’s Tcoefficients.

An example of the correlation resource JSON structure is:

JSONObject correlation =
api.getCorrelation("correlation/55b7c4e99841fa24f20009bf");

JSONObject object = (JSONObject) Utils.getJSONObject(
correlation, "object");

correlation object object:

{
"category": 0,
"clones": 0,
"code": 200,
"columns": 5,
"correlations": {

"correlations": [

(continues on next page)

1.3. Fields Structure 21

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Cram%C3%A9r%27s_V
https://en.wikipedia.org/wiki/Tschuprow%27s_T

bigml-java Documentation, Release master

(continued from previous page)

{
"name": "one_way_anova",
"result": {

"000000": {
"eta_square": 0.61871,
"f_ratio": 119.2645,
"p_value": 0,
"significant": [True,

True,
True

]
},
"000001": {

"eta_square": 0.40078,
"f_ratio": 49.16004,
"p_value": 0,
"significant": [True,

True,
True

]
},
"000002": {

"eta_square": 0.94137,
"f_ratio": 1180.16118,
"p_value": 0,
"significant": [True,

True,
True

]
},
"000003": {

"eta_square": 0.92888,
"f_ratio": 960.00715,
"p_value": 0,
"significant": [True,

True,
True

]
}

},
}],

"fields": {
"000000": {

"column_number": 0,
"datatype": "double",
"idx": 0,
"name": "sepal length",
"optype": "numeric",
"order": 0,
"preferred": True,
"summary": {

"bins": [[4.3,1], [4.425,4], ..., [7.9,1]],
"kurtosis": -0.57357,
"maximum": 7.9,
"mean": 5.84333,
"median": 5.8,
"minimum": 4.3,

(continues on next page)

22 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"missing_count": 0,
"population": 150,
"skewness": 0.31175,
"splits': [4.51526, 4.67252, 4.81113, 4.89582, 4.96139, 5.

→˓01131, ..., 6.92597, 7.20423, 7.64746],
"standard_deviation": 0.82807,
"sum": 876.5,
"sum_squares": 5223.85,
"variance": 0.68569

}
},
"000001": {

"column_number": 1,
"datatype": 'double',
"idx": 1,
"name": "sepal width",
"optype": "numeric",
"order": 1,
"preferred": True,
"summary": {

'counts': [[2,1], [2.2,
...

},
....
"000004": {

"column_number': 4,
"datatype": '"string'",
"idx": 4,
"name": "species",
"optype": "categorical",
"order": 4,
"preferred": True,
"summary": {

"categories": [["Iris-setosa", 50],
["Iris-versicolor",50],
["Iris-virginica", 50]],

"missing_count": 0
},
"term_analysis": {"enabled": True}

}
},

"significance_levels": [0.01, 0.05, 0.1]
},
"created": "2015-07-28T18:07:37.010000",
"credits": 0.017581939697265625,
"dataset": "dataset/55b7a6749841fa2500000d41",
"dataset_status": True,
"dataset_type": 0,
"description": "",
"excluded_fields": [],
"fields_meta": {

"count": 5,
"limit": 1000,
"offset": 0,
"query_total": 5,
"total": 5},

"input_fields": ["000000", "000001", "000002", "000003"],
(continues on next page)

1.3. Fields Structure 23

bigml-java Documentation, Release master

(continued from previous page)

'locale": "en_US",
"max_columns": 5,
"max_rows": 150,
"name": u"iris' dataset correlation",
"objective_field_details": {

"column_number": 4,
"datatype": "string",
"name": "species",
"optype": "categorical",
"order": 4

},
"out_of_bag": False,
"price": 0.0,
"private": True,
"project": None,
"range": [1, 150],
"replacement": False,
"resource": "correlation/55b7c4e99841fa24f20009bf",
"rows": 150,
"sample_rate": 1.0,
"shared": False,
"size": 4609,
"source": "source/55b7a6729841fa24f100036a",
"source_status": True,
"status": {

"code": 5,
"elapsed": 274,
"message": "The correlation has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"updated": "2015-07-28T18:07:49.057000",
"white_box": False

}

Note that the output in the snippet above has been abbreviated. As you see, the correlations attribute contains
the information about each field correlation to the objective field.

1.3.9 Statistical Tests

A statisticaltest resource contains a series of tests that compare the distribution of data in each numeric field
of a dataset to certain canonical distributions, such as the normal distribution or Benford’s law distribution. Statistical
test are useful in tasks such as fraud, normality, or outlier detection.

• Fraud Detection Tests: Benford: This statistical test performs a comparison of the distribution of first significant
digits (FSDs) of each value of the field to the Benford’s law distribution. Benford’s law applies to numerical
distributions spanning several orders of magnitude, such as the values found on financial balance sheets. It states
that the frequency distribution of leading, or first significant digits (FSD) in such distributions is not uniform.
On the contrary, lower digits like 1 and 2 occur disproportionately often as leading significant digits. The test
compares the distribution in the field to Bendford’s distribution using a Chi-square goodness-of-fit test, and
Cho-Gaines d test. If a field has a dissimilar distribution, it may contain anomalous or fraudulent values.

• Normality tests: These tests can be used to confirm the assumption that the data in each field of a dataset is
distributed according to a normal distribution. The results are relevant because many statistical and machine
learning techniques rely on this assumption. Anderson-Darling: The Anderson-Darling test computes a test

24 Chapter 1. Additional Information

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Benford%27s_law

bigml-java Documentation, Release master

statistic based on the difference between the observed cumulative distribution function (CDF) to that of a normal
distribution. A significant result indicates that the assumption of normality is rejected. Jarque-Bera: The Jarque-
Bera test computes a test statistic based on the third and fourth central moments (skewness and kurtosis) of the
data. Again, a significant result indicates that the normality assumption is rejected. Z-score: For a given sample
size, the maximum deviation from the mean that would expected in a sampling of a normal distribution can be
computed based on the 68-95-99.7 rule. This test simply reports this expected deviation and the actual deviation
observed in the data, as a sort of sanity check.

• Outlier tests: Grubbs: When the values of a field are normally distributed, a few values may still deviate from the
mean distribution. The outlier tests reports whether at least one value in each numeric field differs significantly
from the mean using Grubb’s test for outliers. If an outlier is found, then its value will be returned.

An example of the statisticaltest resource JSON structure is:

JSONObject statisticalTest = api.getStatisticalTest("statisticaltest/
→˓55b7c7089841fa25000010ad");
JSONObject object = (JSONObject) Utils.getJSONObject(

statisticalTest, "object");

statisticalTest object object:

{
"category": 0,
"clones": 0,
"code": 200,
"columns": 5,
"created": "2015-07-28T18:16:40.582000",
"credits": 0.017581939697265625,
"dataset": "dataset/55b7a6749841fa2500000d41",
"dataset_status": True,
"dataset_type": 0,
"description": "",
"excluded_fields": [],
"fields_meta": {

"count": 5,
"limit": 1000,
"offset": 0,
"query_total": 5,
"total": 5

},
"input_fields": ["000000", "000001", "000002", "000003"],
"locale": "en_US",
"max_columns": 5,
"max_rows": 150,
"name": u"iris" dataset test",
"out_of_bag": False,
"price": 0.0,
"private": True,
"project": None,
"range": [1, 150],
"replacement": False,
"resource": "statisticaltest/55b7c7089841fa25000010ad",
"rows": 150,
"sample_rate": 1.0,
"shared": False,
"size": 4609,
"source": "source/55b7a6729841fa24f100036a",
"source_status": True,

(continues on next page)

1.3. Fields Structure 25

bigml-java Documentation, Release master

(continued from previous page)

"status": {
"code": 5,
"elapsed": 302,
"message": "The test has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"statistical_tests": {

"ad_sample_size": 1024,
"fields": {

"000000": {
"column_number": 0,
"datatype": "double",
"idx": 0,
"name": "sepal length",
"optype": "numeric",
"order": 0,
"preferred": True,
"summary": {

"bins": [[4.3,1], [4.425,4], ..., [7.9, 1]],
"kurtosis": -0.57357,
"maximum": 7.9,
"mean": 5.84333,
"median": 5.8,
"minimum": 4.3,
"missing_count": 0,
"population": 150,
"skewness": 0.31175,
"splits": [4.51526, 4.67252, 4.81113, 4.89582, ..., 7.20423, 7.

→˓64746],
"standard_deviation": 0.82807,
"sum": 876.5,
"sum_squares": 5223.85,
"variance": 0.68569

}
},
...
"000004": {

"column_number": 4,
"datatype": "string",
"idx": 4,
"name": "species",
"optype": "categorical",
"order": 4,
"preferred": True,
"summary": {

"categories": [["Iris-setosa", 50],
["Iris-versicolor", 50],
["Iris-virginica", 50]],

"missing_count": 0
},
"term_analysis": {"enabled": True}

}
},
"fraud": [
{

(continues on next page)

26 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"name": "benford",
"result": {

"000000": {
"chi_square": {

"chi_square_value": 506.39302,
"p_value": 0,
"significant": [True, True, True]

},
"cho_gaines": {

"d_statistic": 7.124311073683573,
"significant": [True, True, True]

},
"distribution": [0, 0, 0, 22, 61, 54, 13, 0, 0],
"negatives": 0,
"zeros": 0

},
"000001": {

"chi_square": {
"chi_square_value": 396.76556,
"p_value": 0,
"significant": [True, True, True]

},
"cho_gaines": {
"d_statistic": 7.503503138331123,
"significant": [True, True, True]

},
"distribution": [0, 57, 89, 4, 0, 0, 0, 0, 0],
"negatives": 0,
"zeros": 0

},
.....

}
}

],
"normality": [

{
"name": "anderson_darling",
"result": {

"000000": {
"p_value": 0.02252,
"significant": [False, True, True]

},
"000001": {

"p_value": 0.02023,
"significant": [False, True, True]

},
"000002": {

"p_value": 0,
"significant": [True, True, True]

},
"000003": {

"p_value": 0,
"significant": [True, True, True]

}
}

},
{

(continues on next page)

1.3. Fields Structure 27

bigml-java Documentation, Release master

(continued from previous page)

"name": "jarque_bera",
"result": {
"000000": {
"p_value": 0.10615,
"significant": [False, False, False]

},
"000001": {

"p_value": 0.25957,
"significant": [False, False, False]

},
"000002": {

"p_value": 0.0009,
"significant": [True, True, True]

},
"000003": {

"p_value": 0.00332,
"significant": [True, True, True]}

}
},
{
"name": "z_score",
"result": {

"000000": {
"expected_max_z": 2.71305,
"max_z": 2.48369

},
"000001": {
"expected_max_z": 2.71305,
"max_z": 3.08044

},
"000002": {
"expected_max_z": 2.71305,
"max_z": 1.77987

},
"000003": {
"expected_max_z": 2.71305,
"max_z": 1.70638

}
}

}
],
"outliers": [
{

"name": "grubbs",
"result": {

"000000": {
"p_value": 1,
"significant": [False, False, False]

},
"000001": {

"p_value": 0.26555,
"significant": [False, False, False]

},
"000002": {

"p_value": 1,
"significant": [False, False, False]

},
(continues on next page)

28 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"000003": {
"p_value": 1,
"significant": [False, False, False]

}
}

}
],
"significance_levels": [0.01, 0.05, 0.1]

},
"updated": "2015-07-28T18:17:11.829000",
"white_box": False

}

Note that the output in the snippet above has been abbreviated. As you see, the statistical_tests attribute
contains the fraud, normality and outliers sections where the information for each field’s distribution is
stored.

1.3.10 Logistic Regressions

A logistic regression is a supervised machine learning method for solving classification problems. Each of the classes
in the field you want to predict, the objective field, is assigned a probability depending on the values of the input
fields. The probability is computed as the value of a logistic function, whose argument is a linear combination of the
predictors’ values. You can create a logistic regression selecting which fields from your dataset you want to use as
input fields (or predictors) and which categorical field you want to predict, the objective field. Then the created logistic
regression is defined by the set of coefficients in the linear combination of the values. Categorical and text fields need
some prior work to be modelled using this method. They are expanded as a set of new fields, one per category or term
(respectively) where the number of occurrences of the category or term is store. Thus, the linear combination is made
on the frequency of the categories or terms.

An example of the logisticregression resource JSON structure is:

JSONObject logisticRegression =
api.getLogisticRegression("logisticregression/5617e71c37203f506a000001");
JSONObject object = (JSONObject) Utils.getJSONObject(

logisticRegression, "object");

logisticRegression object object:

{
"balance_objective": False,
"category": 0,
"code": 200,
"columns": 5,
"created": "2015-10-09T16:11:08.444000",
"credits": 0.017581939697265625,
"credits_per_prediction": 0.0,
"dataset": "dataset/561304f537203f4c930001ca",
"dataset_field_types": {

"categorical": 1,
"datetime": 0,
"effective_fields": 5,
"numeric": 4,
"preferred": 5,
"text": 0,
"total": 5

(continues on next page)

1.3. Fields Structure 29

bigml-java Documentation, Release master

(continued from previous page)

},
"dataset_status": True,
"description": "",
"excluded_fields": [],
"fields_meta": {

"count": 5,
"limit": 1000,
"offset": 0,
"query_total": 5,
"total": 5

},
"input_fields": ["000000", "000001", "000002", "000003"],
"locale": "en_US",
"logistic_regression": {

"bias": 1,
"c": 1,
"coefficients": [["Iris-virginica",

[-1.7074433493289376,
-1.533662474502423,
2.47026986670851,
2.5567582221085563,
-1.2158200612711925]],

["Iris-setosa",
[0.41021712519841674,

1.464162165246765,
-2.26003266131107,
-1.0210350909174153,
0.26421852991732514]],

["Iris-versicolor",
[0.42702327817072505,

-1.611817241669904,
0.5763832839459982,
-1.4069842681625884,
1.0946877732663143]]],

"eps": 1e-05,
"fields": {
"000000": {

"column_number": 0,
"datatype": "double",
"name": "sepal length",
"optype": "numeric",
"order": 0,
"preferred": True,
"summary": {

"bins": [[4.3,1],[4.425,4],[4.6,4],...,[7.9,1]],
"kurtosis": -0.57357,
"maximum": 7.9,
"mean": 5.84333,
"median": 5.8,
"minimum": 4.3,
"missing_count": 0,
"population": 150,
"skewness": 0.31175,
"splits": [4.51526, 4.67252, 4.81113, ..., 6.92597, 7.20423, 7.

→˓64746],
"standard_deviation": 0.82807,
"sum": 876.5,

(continues on next page)

30 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"sum_squares": 5223.85,
"variance": 0.68569

}
},
"000001": {

"column_number": 1,
"datatype": "double",
"name": "sepal width",
"optype": "numeric",
"order": 1,
"preferred": True,
"summary": {

"counts": [[2,1],[2.2,3],...,[4.2,1],[4.4,1]],
"kurtosis": 0.18098,
"maximum": 4.4,
"mean": 3.05733,
"median": 3,
"minimum": 2,
"missing_count": 0,
"population": 150,
"skewness": 0.31577,
"standard_deviation": 0.43587,
"sum": 458.6,
"sum_squares": 1430.4,
"variance": 0.18998

}
},
"000002": {

"column_number": 2,
"datatype": "double",
"name": "petal length",
"optype": "numeric",
"order": 2,
"preferred": True,
"summary": {

"bins": [[1,1],[1.16667,3],...,[6.6,1],[6.7,2],[6.9,1]],
"kurtosis": -1.39554,
"maximum": 6.9,
"mean": 3.758,
"median": 4.35,
"minimum": 1,
"missing_count": 0,
"population": 150,
"skewness": -0.27213,
"splits": [1.25138,1.32426,1.37171,...,6.02913,6.38125],
"standard_deviation": 1.7653,
"sum": 563.7,
"sum_squares": 2582.71,
"variance": 3.11628

}
},
"000003": {

"column_number": 3,
"datatype": "double",
"name": "petal width",
"optype": "numeric",
"order": 3,

(continues on next page)

1.3. Fields Structure 31

bigml-java Documentation, Release master

(continued from previous page)

"preferred": True,
"summary": {

"counts": [[0.1,5],[0.2,29],...,[2.4,3],[2.5,3]],
"kurtosis": -1.33607,
"maximum": 2.5,
"mean": 1.19933,
"median": 1.3,
"minimum": 0.1,
"missing_count": 0,
"population": 150,
"skewness": -0.10193,
"standard_deviation": 0.76224,
"sum": 179.9,
"sum_squares": 302.33,
"variance": 0.58101

}
},
"000004": {

"column_number": 4,
"datatype": "string",
"name": "species",
"optype": "categorical",
"order": 4,
"preferred": True,
"summary": {

"categories": [["Iris-setosa",50],
["Iris-versicolor",50],
["Iris-virginica",50]],

"missing_count": 0
},
"term_analysis": {"enabled": True}

}
},
"normalize": False,
"regularization": "l2"

},
"max_columns": 5,
"max_rows": 150,
"name": u"iris" dataset"s logistic regression",
"number_of_batchpredictions": 0,
"number_of_evaluations": 0,
"number_of_predictions": 1,
"objective_field": "000004",
"objective_field_name": "species",
"objective_field_type": "categorical",
"objective_fields": ["000004"],
"out_of_bag": False,
"private": True,
"project": "project/561304c137203f4c9300016c",
"range": [1, 150],
"replacement": False,
"resource": "logisticregression/5617e71c37203f506a000001",
"rows": 150,
"sample_rate": 1.0,
"shared": False,
"size": 4609,
"source": "source/561304f437203f4c930001c3",

(continues on next page)

32 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"source_status": True,
"status": { "code": 5,

"elapsed": 86,
"message": "The logistic regression has been created",
"progress": 1.0},

"subscription": False,
"tags": ["species"],
"updated": "2015-10-09T16:14:02.336000",
"white_box": False

}

Note that the output in the snippet above has been abbreviated. As you see, the logistic_regression attribute
stores the coefficients used in the logistic function as well as the configuration parameters described in the developers
section.

1.3.11 Linear Regressions

A linear regression is a supervised machine learning method for solving regression problems. The implementation
is a multiple linear regression that models the output as a linear combination of the predictors. The coefficients are
estimated doing a least-squares fit on the training data.

As a linear combination can only be done using numeric values, non-numeric fields need to be transformed to numeric
ones following some rules:

• Categorical fields will be encoded and each class appearance in input data will convey a different contribution
to the input vector.

• Text and items fields will be expanded to several numeric predictors, each one indicating the number of oc-
curences for a specific term. Text fields without term analysis are excluded from the model.

Therefore, the initial input data is transformed into an input vector with one or may components per field. Also, if a
field in the training data contains missing data, the components corresponding to that field will include an additional 1
or 0 value depending on whether the field is missing in the input data or not.

The JSON structure for a linear regression is:

JSONObject linearRegression = api.getLinearRegression(“lineqarregression/5617e71c37203f506a000001”);
JSONObject object = (JSONObject) Utils.getJSONObject(linearRegression, “object”);

linearRegression object object:

{
'category': 0,
'code': 200,
'columns': 4,
'composites': None,
'configuration': None,
'configuration_status': False,
'created': '2019-02-20T21:02:40.027000',
'creator': 'merce',
'credits': 0.0,
'credits_per_prediction': 0.0,
'dataset': 'dataset/5c6dc06a983efc18e2000084',
'dataset_field_types': {

'categorical': 0,
'datetime': 0,
'items': 0,

(continues on next page)

1.3. Fields Structure 33

https://bigml.com/api/logisticregressions
https://bigml.com/api/logisticregressions

bigml-java Documentation, Release master

(continued from previous page)

'numeric': 6,
'preferred': 6,
'text': 0,
'total': 6

},
'dataset_status': True,
'datasets': [],
'default_numeric_value': None,
'description': '',
'excluded_fields': [],
'execution_id': None,
'execution_status': None,
'fields_maps': None,
'fields_meta': {

'count': 4,
'limit': 1000,
'offset': 0,
'query_total': 4,
'total': 4

},
'fusions': None,
'input_fields': ['000000', '000001', '000002'],
'linear_regression': {

'bias': True,
'coefficients': [

[-1.88196],
[0.475633],
[0.122468],
[30.9141]

],
'fields': {

'000000': {
'column_number': 0,
'datatype': 'int8',
'name': 'Prefix',
'optype': 'numeric',
'order': 0,
'preferred': True,
'summary': {

'counts': [
[4, 1],

...

'stats': {
'confidence_intervals': [

[5.63628],
[0.375062],
[0.348577],
[44.4112]

],
'mean_squared_error': 342.206,
'number_of_parameters': 4,
'number_of_samples': 77,
'p_values': [

[0.512831],
[0.0129362],
[0.491069],

(continues on next page)

34 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

[0.172471]
],
'r_squared': 0.136672,
'standard_errors': [

[2.87571],
[0.191361],
[0.177849],
[22.6592]

],
'sum_squared_errors': 24981,
'xtx_inverse': [

[4242,
48396.9,
51273.97,
568],

[48396.9,
570177.6584,
594274.3274,
6550.52],

[51273.97,
594274.3274,
635452.7068,
6894.24],

[568,
6550.52,
6894.24,
77]

],
'z_scores': [

[-0.654436],
[2.48552],
[0.688609],
[1.36431]

]
}

},
'locale': 'en_US',
'max_columns': 6,
'max_rows': 80,
'name': 'grades',
'name_options': 'bias',
'number_of_batchpredictions': 0,
'number_of_evaluations': 0,
'number_of_predictions': 2,
'number_of_public_predictions': 0,
'objective_field': '000005',
'objective_field_name': 'Final',
'objective_field_type': 'numeric',
'objective_fields': ['000005'],
'operating_point': { },
'optiml': None,
'optiml_status': False,
'ordering': 0,
'out_of_bag': False,
'out_of_bags': None,
'price': 0.0,
'private': True,

(continues on next page)

1.3. Fields Structure 35

bigml-java Documentation, Release master

(continued from previous page)

'project': 'project/5c6dc062983efc18d5000129',
'range': None,
'ranges': None,
'replacement': False,
'replacements': None,
'resource': 'linearregression/5c6dc070983efc18e00001f1',
'rows': 80,
'sample_rate': 1.0,
'sample_rates': None,
'seed': None,
'seeds': None,
'shared': False,
'size': 2691,
'source': 'source/5c6dc064983efc18e00001ed',
'source_status': True,
'status': {

'code': 5,
'elapsed': 62086,
'message': 'The linear regression has been created',
'progress': 1

},
'subscription': True,
'tags': [],
'type': 0,
'updated': '2019-02-27T18:01:18.539000',
'user_metadata': {},
'webhook': None,
'weight_field': None,
'white_box': False

}

Note that the output in the snippet above has been abbreviated. As you see, the linear_regression attribute
stores the coefficients used in the linear function as well as the configuration parameters described in the developers
section.

1.3.12 Associations

Association Discovery is a popular method to find out relations among values in high-dimensional datasets.

A common case where association discovery is often used is market basket analysis. This analysis seeks for customer
shopping patterns across large transactional datasets. For instance, do customers who buy hamburgers and ketchup
also consume bread?

Businesses use those insights to make decisions on promotions and product placements. Association Discovery can
also be used for other purposes such as early incident detection, web usage analysis, or software intrusion detection.

In BigML, the Association resource object can be built from any dataset, and its results are a list of association rules
between the items in the dataset. In the example case, the corresponding association rule would have hamburguers
and ketchup as the items at the left hand side of the association rule and bread would be the item at the right hand
side. Both sides in this association rule are related, in the sense that observing the items in the left hand side implies
observing the items in the right hand side. There are some metrics to ponder the quality of these association rules:

• Support: the proportion of instances which contain an itemset.

For an association rule, it means the number of instances in the dataset which contain the rule’s antecedent and rule’s
consequent together over the total number of instances (N) in the dataset.

36 Chapter 1. Additional Information

https://bigml.com/api/linearregressions
https://bigml.com/api/linearregressions

bigml-java Documentation, Release master

It gives a measure of the importance of the rule. Association rules have to satisfy a minimum support constraint (i.e.,
min_support).

• Coverage: the support of the antedecent of an association rule. It measures how often a rule can be applied.

• Confidence or (strength): The probability of seeing the rule’s consequent under the condition that the instances
also contain the rule’s antecedent. Confidence is computed using the support of the association rule over the
coverage. That is, the percentage of instances which contain the consequent and antecedent together over the
number of instances which only contain the antecedent.

Confidence is directed and gives different values for the association rules Antecedent → Consequent and Consequent
→ Antecedent. Association rules also need to satisfy a minimum confidence constraint (i.e., min_confidence).

• Leverage: the difference of the support of the association rule (i.e., the antecedent and consequent appearing
together) and what would be expected if antecedent and consequent where statistically independent. This is a
value between -1 and 1. A positive value suggests a positive relationship and a negative value suggests a negative
relationship. 0 indicates independence.

Lift: how many times more often antecedent and consequent occur together than expected if they where statistically
independent. A value of 1 suggests that there is no relationship between the antecedent and the consequent. Higher
values suggest stronger positive relationships. Lower values suggest stronger negative relationships (the presence of
the antecedent reduces the likelihood of the consequent)

As to the items used in association rules, each type of field is parsed to extract items for the rules as follows:

• Categorical: each different value (class) will be considered a separate item.

• Text: each unique term will be considered a separate item.

• Items: each different item in the items summary will be considered.

• Numeric: Values will be converted into categorical by making a segmentation of the values. For example, a
numeric field with values ranging from 0 to 600 split into 3 segments: segment 1 → [0, 200), segment 2 →
[200, 400), segment 3 → [400, 600]. You can refine the behavior of the transformation using discretization and
field_discretizations.

An example of the association resource JSON structure is:

JSONObject association =
api.getAssociation("association/5621b70910cb86ae4c000000");

JSONObject object = (JSONObject) Utils.getJSONObject(
sssociation, "object");

association object object:

{
"associations":{

"complement":false,
"discretization":{

"pretty":true,
"size":5,
"trim":0,
"type":"width"

},
"items":[

{
"complement":false,
"count":32,
"field_id":"000000",
"name":"Segment 1",
"bin_end":5,

(continues on next page)

1.3. Fields Structure 37

https://bigml.com/api/associations#ad_create_discretization
https://bigml.com/api/associations#ad_create_field_discretizations

bigml-java Documentation, Release master

(continued from previous page)

"bin_start":null
},
{

"complement":false,
"count":49,
"field_id":"000000",
"name":"Segment 3",
"bin_end":7,
"bin_start":6

},
{

"complement":false,
"count":12,
"field_id":"000000",
"name":"Segment 4",
"bin_end":null,
"bin_start":7

},
{

"complement":false,
"count":19,
"field_id":"000001",
"name":"Segment 1",
"bin_end":2.5,
"bin_start":null

},
...
{

"complement":false,
"count":50,
"field_id":"000004",
"name":"Iris-versicolor"

},
{

"complement":false,
"count":50,
"field_id":"000004",
"name":"Iris-virginica"

}
],
"max_k": 100,
"min_confidence":0,
"min_leverage":0,
"min_lift":1,
"min_support":0,
"rules":[

{
"confidence":1,
"id":"000000",
"leverage":0.22222,
"lhs":[

13
],
"lhs_cover":[

0.33333,
50

],
(continues on next page)

38 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"lift":3,
"p_value":0.000000000,
"rhs":[

6
],
"rhs_cover":[

0.33333,
50

],
"support":[

0.33333,
50

]
},
{

"confidence":1,
"id":"000001",
"leverage":0.22222,
"lhs":[

6
],
"lhs_cover":[

0.33333,
50

],
"lift":3,
"p_value":0.000000000,
"rhs":[

13
],
"rhs_cover":[

0.33333,
50

],
"support":[

0.33333,
50

]
},
...
{

"confidence":0.26,
"id":"000029",
"leverage":0.05111,
"lhs":[

13
],
"lhs_cover":[

0.33333,
50

],
"lift":2.4375,
"p_value":0.0000454342,
"rhs":[

5
],
"rhs_cover":[

(continues on next page)

1.3. Fields Structure 39

bigml-java Documentation, Release master

(continued from previous page)

0.10667,
16

],
"support":[

0.08667,
13

]
},
{

"confidence":0.18,
"id":"00002a",
"leverage":0.04,
"lhs":[

15
],
"lhs_cover":[

0.33333,
50

],
"lift":3,
"p_value":0.0000302052,
"rhs":[

9
],
"rhs_cover":[

0.06,
9

],
"support":[

0.06,
9

]
},
{

"confidence":1,
"id":"00002b",
"leverage":0.04,
"lhs":[

9
],
"lhs_cover":[

0.06,
9

],
"lift":3,
"p_value":0.0000302052,
"rhs":[

15
],
"rhs_cover":[

0.33333,
50

],
"support":[

0.06,
9

]
(continues on next page)

40 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

}
],
"rules_summary":{

"confidence":{
"counts":[

[
0.18,
1

],
[

0.24,
1

],
[

0.26,
2

],
...
[

0.97959,
1

],
[

1,
9

]
],
"maximum":1,
"mean":0.70986,
"median":0.72864,
"minimum":0.18,
"population":44,
"standard_deviation":0.24324,
"sum":31.23367,
"sum_squares":24.71548,
"variance":0.05916

},
"k":44,
"leverage":{

"counts":[
[

0.04,
2

],
[

0.05111,
4

],
[

0.05316,
2

],
...
[

0.22222,
2

]
(continues on next page)

1.3. Fields Structure 41

bigml-java Documentation, Release master

(continued from previous page)

],
"maximum":0.22222,
"mean":0.10603,
"median":0.10156,
"minimum":0.04,
"population":44,
"standard_deviation":0.0536,
"sum":4.6651,
"sum_squares":0.61815,
"variance":0.00287

},
"lhs_cover":{

"counts":[
[

0.06,
2

],
[

0.08,
2

],
[

0.10667,
4

],
[

0.12667,
1

],
...
[

0.5,
4

]
],
"maximum":0.5,
"mean":0.29894,
"median":0.33213,
"minimum":0.06,
"population":44,
"standard_deviation":0.13386,
"sum":13.15331,
"sum_squares":4.70252,
"variance":0.01792

},
"lift":{

"counts":[
[

1.40625,
2

],
[

1.5067,
2

],
...
[

(continues on next page)

42 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

2.63158,
4

],
[

3,
10

],
[

4.93421,
2

],
[

12.5,
2

]
],
"maximum":12.5,
"mean":2.91963,
"median":2.58068,
"minimum":1.40625,
"population":44,
"standard_deviation":2.24641,
"sum":128.46352,
"sum_squares":592.05855,
"variance":5.04635

},
"p_value":{

"counts":[
[

0.000000000,
2

],
[

0.000000000,
4

],
[

0.000000000,
2

],
...
[

0.0000910873,
2

]
],
"maximum":0.0000910873,
"mean":0.0000106114,
"median":0.00000000,
"minimum":0.000000000,
"population":44,
"standard_deviation":0.0000227364,
"sum":0.000466903,
"sum_squares":0.0000000,
"variance":0.000000001

},
"rhs_cover":{

(continues on next page)

1.3. Fields Structure 43

bigml-java Documentation, Release master

(continued from previous page)

"counts":[
[

0.06,
2

],
[

0.08,
2

],
...
[

0.42667,
2

],
[

0.46667,
3

],
[

0.5,
4

]
],
"maximum":0.5,
"mean":0.29894,
"median":0.33213,
"minimum":0.06,
"population":44,
"standard_deviation":0.13386,
"sum":13.15331,
"sum_squares":4.70252,
"variance":0.01792

},
"support":{

"counts":[
[

0.06,
4

],
[

0.06667,
2

],
[

0.08,
2

],
[

0.08667,
4

],
[

0.10667,
4

],
[

0.15333,
(continues on next page)

44 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

2
],
[

0.18667,
4

],
[

0.19333,
2

],
[

0.20667,
2

],
[

0.27333,
2

],
[

0.28667,
2

],
[

0.3,
4

],
[

0.32,
2

],
[

0.33333,
6

],
[

0.37333,
2

]
],
"maximum":0.37333,
"mean":0.20152,
"median":0.19057,
"minimum":0.06,
"population":44,
"standard_deviation":0.10734,
"sum":8.86668,
"sum_squares":2.28221,
"variance":0.01152

}
},
"search_strategy":"leverage",
"significance_level":0.05

},
"category":0,
"clones":0,
"code":200,
"columns":5,

(continues on next page)

1.3. Fields Structure 45

bigml-java Documentation, Release master

(continued from previous page)

"created":"2015-11-05T08:06:08.184000",
"credits":0.017581939697265625,
"dataset":"dataset/562fae3f4e1727141d00004e",
"dataset_status":true,
"dataset_type":0,
"description":"",
"excluded_fields":[],
"fields_meta":{

"count":5,
"limit":1000,
"offset":0,
"query_total":5,
"total":5

},
"input_fields":[

"000000",
"000001",
"000002",
"000003",
"000004"

],
"locale":"en_US",
"max_columns":5,
"max_rows":150,
"name":"iris' dataset's association",
"out_of_bag":false,
"price":0,
"private":true,
"project":null,
"range":[

1,
150

],
"replacement":false,
"resource":"association/5621b70910cb86ae4c000000",
"rows":150,
"sample_rate":1,
"shared":false,
"size":4609,
"source":"source/562fae3a4e1727141d000048",
"source_status":true,
"status":{

"code":5,
"elapsed":1072,
"message":"The association has been created",
"progress":1

},
"subscription":false,
"tags":[],
"updated":"2015-11-05T08:06:20.403000",
"white_box":false

}

Note that the output in the snippet above has been abbreviated. As you see, the associations attribute stores
items, rules and metrics extracted from the datasets as well as the configuration parameters described in the developers
section.

46 Chapter 1. Additional Information

https://bigml.com/api/associations
https://bigml.com/api/associations

bigml-java Documentation, Release master

1.3.13 Topic Models

A topic model is an unsupervised machine learning method for unveiling all the different topics underlying a collection
of documents. BigML uses Latent Dirichlet Allocation (LDA), one of the most popular probabilistic methods for topic
modeling. In BigML, each instance (i.e. each row in your dataset) will be considered a document and the contents of
all the text fields given as inputs will be automatically concatenated and considered the document bag of words.

Topic model is based on the assumption that any document exhibits a mixture of topics. Each topic is composed of a
set of words which are thematically related. The words from a given topic have different probabilities for that topic.
At the same time, each word can be attributable to one or several topics. So for example the word “sea” may be found
in a topic related with sea transport but also in a topic related to holidays. Topic model automatically discards stop
words and high frequency words.

Topic model’s main applications include browsing, organizing and understanding large archives of documents. It can
been applied for information retrieval, collaborative filtering, assessing document similarity among others. The topics
found in the dataset can also be very useful new features before applying other models like classification, clustering,
or anomaly detection.

An example of the topicmodel resource JSON structure is:

JSONObject topicModel =
api.getTopicModel("topicmodel/58362aaa983efc45a1000007");

JSONObject object = (JSONObject) Utils.getJSONObject(topicModel, "object");

topicModel object object:

{
"category": 0,
"code": 200,
"columns": 1,
"configuration": None,
"configuration_status": False,
"created": "2016-11-23T23:47:54.703000",
"credits": 0.0,
"credits_per_prediction": 0.0,
"dataset": "dataset/58362aa0983efc45a0000005",
"dataset_field_types": {

"categorical": 1,
"datetime": 0,
"effective_fields": 672,
"items": 0,
"numeric": 0,
"preferred": 2,
"text": 1,
"total": 2

},
"dataset_status": True,
"dataset_type": 0,
"description": "",
"excluded_fields": [],
"fields_meta": {

"count": 1,
"limit": 1000,
"offset": 0,
"query_total": 1,
"total": 1

},
"input_fields": ["000001"],

(continues on next page)

1.3. Fields Structure 47

bigml-java Documentation, Release master

(continued from previous page)

"locale": "en_US",
"max_columns": 2,
"max_rows": 656,
"name": u"spam dataset"s Topic Model ",
"number_of_batchtopicdistributions": 0,
"number_of_public_topicdistributions": 0,
"number_of_topicdistributions": 0,
"ordering": 0,
"out_of_bag": False,
"price": 0.0,
"private": True,
"project": None,
"range": [1, 656],
"replacement": False,
"resource": "topicmodel/58362aaa983efc45a1000007",
"rows": 656,
"sample_rate": 1.0,
"shared": False,
"size": 54740,
"source": "source/58362a69983efc459f000001",
"source_status": True,
"status": {

"code": 5,
"elapsed": 3222,
"message": "The topic model has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"topic_model": {

"alpha": 4.166666666666667,
"beta": 0.1,
"bigrams": False,
"case_sensitive": False,
"fields": {

"000001": {
"column_number": 1,
"datatype": "string",
"name": "Message",
"optype": "text",
"order": 0,
"preferred": True,
"summary": {

"average_length": 78.14787,
"missing_count": 0,
"tag_cloud": [["call",72],["ok",36],...,["yijue",2]],
"term_forms": { }

},
"term_analysis": {

"case_sensitive": False,
"enabled": True,
"language": "en",
"stem_words": False,
"token_mode": "all",
"use_stopwords": False

}
}

(continues on next page)

48 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

},
"hashed_seed": 62146850,
"language": "en",
"number_of_topics": 12,
"term_limit": 4096,
"term_topic_assignments": [

[0,5,0,1,0,19,0,0,19,0,1,0],
[0,0,0,13,0,0,0,0,5,0,0,0],
...
[0,7,27,0,112,0,0,0,0,0,14,2]

],
"termset": ["000","03","04",...,"yr","yup","\xfc"],
"top_n_terms": 10,
"topicmodel_seed": "26c386d781963ca1ea5c90dab8a6b023b5e1d180",
"topics": [{ "id": "000000",

"name": "Topic 00",
"probability": 0.09375,
"top_terms": [["im",

0.04849],
["hi",

0.04717],
["love",

0.04585],
["please",

0.02867],
["tomorrow",

0.02867],
["cos",

0.02823],
["sent",

0.02647],
["da",

0.02383],
["meet",

0.02207],
["dinner",

0.01898]]},
{ "id": "000001",

"name": "Topic 01",
"probability": 0.08215,
"top_terms": [["lt",

0.1015],
["gt",

0.1007],
["wish",

0.03958],
["feel",

0.0272],
["shit",

0.02361],
["waiting",

0.02281],
["stuff",

0.02001],
["name",

0.01921],
["comp",

(continues on next page)

1.3. Fields Structure 49

bigml-java Documentation, Release master

(continued from previous page)

0.01522],
["forgot",

0.01482]]},
...

{ "id": "00000b",
"name": "Topic 11",
"probability": 0.0826,
"top_terms": [["call",

0.15084],
["min",

0.05003],
["msg",

0.03185],
["home",

0.02648],
["mind",

0.02152],
["lt",

0.01987],
["bring",

0.01946],
["camera",

0.01905],
["set",

0.01905],
["contact",

0.01781]]
}

],
"use_stopwords": False

},
"updated": "2016-11-23T23:48:03.336000",
"white_box": False

}

Note that the output in the snippet above has been abbreviated.

The topic model returns a list of top terms for each topic found in the data. Note that topics are not labeled, so you
have to infer their meaning according to the words they are composed of.

Once you build the topic model you can calculate each topic probability for a given document by using Topic Distri-
bution. This information can be useful to find documents similarities based on their thematic.

As you see, the topic_model attribute stores the topics and termset and term to topic assignment, as well as the
configuration parameters described in the developers section.

1.3.14 Time Series

A time series model is a supervised learning method to forecast the future values of a field based on its previously
observed values. It is used to analyze time based data when historical patterns can explain the future behavior such
as stock prices, sales forecasting, website traffic, production and inventory analysis, weather forecasting, etc. A time
series model needs to be trained with time series data, i.e., a field containing a sequence of equally distributed data
points in time.

BigML implements exponential smoothing to train time series models. Time series data is modeled as a level compo-
nent and it can optionally include a trend (damped or not damped) and a seasonality components. You can learn more
about how to include these components and their use in the API documentation page.

50 Chapter 1. Additional Information

https://bigml.com/api/topicmodels
https://bigml.io/api/

bigml-java Documentation, Release master

You can create a time series model selecting one or several fields from your dataset, that will be the ojective fields.
The forecast will compute their future values.

An example of the topicmodel resource JSON structure is:

JSONObject timeSeries =
api.getTimeSeries("timeseries/596a0f66983efc53f3000000");

JSONObject object = (JSONObject) Utils.getJSONObject(timeSeries, "object");

timeSeries object object:

{
"category": 0,
"clones": 0,
"code": 200,
"columns": 1,
"configuration": None,
"configuration_status": False,
"created": "2017-07-15T12:49:42.601000",
"credits": 0.0,
"dataset": "dataset/5968ec42983efc21b0000016",
"dataset_field_types": {

"categorical": 0,
"datetime": 0,
"effective_fields": 6,
"items": 0,
"numeric": 6,
"preferred": 6,
"text": 0,
"total": 6

},
"dataset_status": True,
"dataset_type": 0,
"description": "",
"fields_meta": {

"count": 1,
"limit": 1000,
"offset": 0,
"query_total": 1,
"total": 1

},
"forecast": {

"000005": [
{
"lower_bound": [30.14111, 30.14111, ... 30.14111],
"model": "A,N,N",
"point_forecast": [68.53181, 68.53181, ..., 68.53181, 68.53181],
"time_range": {

"end": 129,
"interval": 1,
"interval_unit": "milliseconds",
"start": 80

},
"upper_bound": [106.92251, 106.92251, ... 106.92251, 106.92251]

},
{
"lower_bound": [35.44118, 35.5032, ..., 35.28083],
"model": "A,Ad,N",

(continues on next page)

1.3. Fields Structure 51

bigml-java Documentation, Release master

(continued from previous page)

...
66.83537,
66.9465],

"time_range": {
"end": 129,
"interval": 1,
"interval_unit": "milliseconds",
"start": 80

}
}

]
},
"horizon": 50,
"locale": "en_US",
"max_columns": 6,
"max_rows": 80,
"name": "my_ts_data",
"name_options": "period=1, range=[1, 80]",
"number_of_evaluations": 0,
"number_of_forecasts": 0,
"number_of_public_forecasts": 0,
"objective_field": "000005",
"objective_field_name": "Final",
"objective_field_type": "numeric",
"objective_fields": ["000005"],
"objective_fields_names": ["Final"],
"price": 0.0,
"private": True,
"project": None,
"range": [1, 80],
"resource": "timeseries/596a0f66983efc53f3000000",
"rows": 80,
"shared": False,
"short_url": "",
"size": 2691,
"source": "source/5968ec3c983efc218c000006",
"source_status": True,
"status": {

"code": 5,
"elapsed": 8358,
"message": "The time series has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"time_series": {

"all_numeric_objectives": False,
"datasets": {
"000005": "dataset/596a0f70983efc53f3000003"},
"ets_models": {

"000005": [
{

"aic": 831.30903,
"aicc": 831.84236,
"alpha": 0.00012,
"beta": 0,
"bic": 840.83713,

(continues on next page)

52 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"final_state": { "b": 0,
"l": 68.53181,
"s": [0]},

"gamma": 0,
"initial_state": { "b": 0,

"l": 68.53217,
"s": [0]},

"name": "A,N,N",
"period": 1,
"phi": 1,
"r_squared": -0.0187,
"sigma": 19.19535

},
{

"aic": 834.43049,
...
"slope": 0.11113,
"value": 61.39

}
]

},
"fields": {

"000005": {
"column_number": 5,
"datatype": "double",
"name": "Final",
"optype": "numeric",
"order": 0,
"preferred": True,
"summary": {

"bins": [[28.06,1], ..., [108.335,2]],
...
"sum_squares": 389814.3944,
"variance": 380.73315

}
}

},
"period": 1,
"time_range": {

"end": 79,
"interval": 1,
"interval_unit": "milliseconds",
"start": 0

}
},

"type": 0,
"updated": "2017-07-15T12:49:52.549000",
"white_box": False

}

1.3.15 OptiMLs

An OptiML is the result of an automated optimization process to find the best model (type and configuration) to solve
a particular classification or regression problem.

The selection process automates the usual time-consuming task of trying different models and parameters and evalu-

1.3. Fields Structure 53

bigml-java Documentation, Release master

ating their results to find the best one. Using the OptiML, non-experts can build top-performing models.

You can create an OptiML selecting the ojective field to be predicted, the evaluation metric to be used to rank the
models tested in the process and a maximum time for the task to be run.

An example of the optiML resource JSON structure is:

JSONObject optiML = api.getOptiML("optiml/5afde4a42a83475c1b0008a2");
JSONObject object = (JSONObject) Utils.getJSONObject(optiML, "object");

optiML object object:

{
"category": 0,
"code": 200,
"configuration": None,
"configuration_status": False,
"created": "2018-05-17T20:23:00.060000",
"creator": "mmartin",
"dataset": "dataset/5afdb7009252732d930009e8",
"dataset_status": True,
"datasets": ["dataset/5afde6488bf7d551ee00081c",

"dataset/5afde6488bf7d551fd00511f",
"dataset/5afde6488bf7d551fe002e0f",
...
"dataset/5afde64d8bf7d551fd00512e"],

"description": "",
"evaluations": ["evaluation/5afde65c8bf7d551fd00514c",

"evaluation/5afde65c8bf7d551fd00514f",
...
"evaluation/5afde6628bf7d551fd005161"],

"excluded_fields": [],
"fields_meta": {

"count": 5,
"limit": 1000,
"offset": 0,
"query_total": 5,
"total": 5

},
"input_fields": ["000000", "000001", "000002", "000003"],
"model_count": {

"linearregression": 1,
"logisticregression": 1,
"model": 8,
"total": 9

},
"models": ["model/5afde64e8bf7d551fd005131",

"model/5afde64f8bf7d551fd005134",
"model/5afde6518bf7d551fd005137",
"model/5afde6538bf7d551fd00513a",
"linearregression/5c8f576e1f386f7dc3000048",
"logisticregression/5afde6558bf7d551fd00513d",
...
"model/5afde65a8bf7d551fd005149"],

"models_meta": {
"count": 9,
"limit": 1000,
"offset": 0,
"total": 9

(continues on next page)

54 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

},
"name": "iris",
"name_options": "9 total models (linearregression: 1, logisticregression: 1,

→˓model: 8), metric=max_phi, model candidates=18, max. training time=300",
"objective_field": "000004",
"objective_field_details": {

"column_number": 4,
"datatype": "string",
"name": "species",
"optype": "categorical",
"order": 4

},
"objective_field_name": "species",
"objective_field_type": "categorical",
"objective_fields": ["000004"],
"optiml": {

"created_resources": {
"dataset": 10,
"linearregression": 1,
"logisticregression": 11,
"logisticregression_evaluation": 11,
"model": 29,
"model_evaluation": 29

},
"datasets": [{ "id": "dataset/5afde6488bf7d551ee00081c",

"name": "iris",
"name_options": "120 instances, 5 fields (1 categorical,

→˓4 numeric), sample rate=0.8"},
{ "id": "dataset/5afde6488bf7d551fd00511f",

"name": "iris",
"name_options": "30 instances, 5 fields (1 categorical, 4

→˓numeric), sample rate=0.2, out of bag"},
{ "id": "dataset/5afde6488bf7d551fe002e0f",

"name": "iris",
"name_options": "120 instances, 5 fields (1 categorical,

→˓4 numeric), sample rate=0.8"},
...
{ "id": "dataset/5afde64d8bf7d551fd00512e",

"name": "iris",
"name_options": "120 instances, 5 fields (1 categorical,

→˓4 numeric), sample rate=0.8"}],
"fields": {
"000000": {

"column_number": 0,
"datatype": "double",
"name": "sepal length",
"optype": "numeric",
"order": 0,
"preferred": True,
"summary": {

"bins": [[4.3,1], ..., [7.9,1]],
...
"sum": 179.9,
"sum_squares": 302.33,
"variance": 0.58101

}
},

(continues on next page)

1.3. Fields Structure 55

bigml-java Documentation, Release master

(continued from previous page)

"000004": {
"column_number": 4,
"datatype": "string",
"name": "species",
"optype": "categorical",
"order": 4,
"preferred": True,
"summary": {

"categories": [["Iris-setosa",50],
["Iris-versicolor",50],
["Iris-virginica",50]],

"missing_count": 0
},
"term_analysis": {"enabled": True}

}
},
"max_training_time": 300,
"metric": "max_phi",
"model_types": ["model", "linearregression", "logisticregression"],
"models": [

{
"evaluation": {

"id": "evaluation/5afde65c8bf7d551fd00514c",
"info": {

"accuracy": 0.96667,
"average_area_under_pr_curve": 0.97867,
...
"per_class_statistics": [
{

"accuracy": 1,
"area_under_pr_curve": 1,
...
"spearmans_rho": 0.82005

}
]

},
"metric_value": 0.95356,
"metric_variance": 0.00079,
"name": "iris vs. iris",
"name_options": "279-node, deterministic order, operating

→˓kind=probability"
},
"evaluation_count": 3,
"id": "model/5afde64e8bf7d551fd005131",
"importance": [["000002",

0.70997],
["000003",

0.27289],
["000000",

0.0106],
["000001",

0.00654]],
"kind": "model",
"name": "iris",
"name_options": "279-node, deterministic order"

},
....

(continues on next page)

56 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

}
"private": True,
"project": None,
"resource": "optiml/5afde4a42a83475c1b0008a2",
"shared": False,
"size": 3686,
"source": "source/5afdb6fb9252732d930009e5",
"source_status": True,
"status": {

"code": 5,
"elapsed": 448878.0,
"message": "The optiml has been created",
"progress": 1

},
"subscription": False,
"tags": [],
"test_dataset": None,
"type": 0,
"updated": "2018-05-17T20:30:29.063000"

}

1.3.16 Fusions

A Fusion is a special type of composed resource for which all submodels satisfy the following constraints: they’re
all either classifications or regressions over the same kind of data or compatible fields, with the same objective field.
Given those properties, a fusion can be considered a supervised model, and therefore one can predict with fusions and
evaluate them. Ensembles can be viewed as a kind of fusion subject to the additional constraints that all its submodels
are tree models that, moreover, have been built from the same base input data, but sampled in particular ways.

The model types allowed to be a submodel of a fusion are: deepnet, ensemble, fusion, model, logistic regression and
linear regression.

An example of the fusion resource JSON structure is:

JSONObject fusion = api.getFusion("fusion/59af8107b8aa0965d5b61138");
JSONObject object = (JSONObject) Utils.getJSONObject(fusion, "object");

fusion object object:

{
"category": 0,
"code": 200,
"configuration": null,
"configuration_status": false,
"created": "2018-05-09T20:11:05.821000",
"credits_per_prediction": 0,
"description": "",
"fields_meta": {

"count": 5,
"limit": 1000,
"offset": 0,
"query_total": 5,
"total": 5

},
"fusion": {

(continues on next page)

1.3. Fields Structure 57

bigml-java Documentation, Release master

(continued from previous page)

"models": [
{

"id": "ensemble/5af272eb4e1727d378000050",
"kind": "ensemble",
"name": "Iris ensemble",
"name_options": "boosted trees, 1999-node, 16-iteration,

→˓deterministic order, balanced"
},
{

"id": "model/5af272fe4e1727d3780000d6",
"kind": "model",
"name": "Iris model",
"name_options": "1999-node, pruned, deterministic order, balanced"

},
{

"id": "logisticregression/5af272ff4e1727d3780000d9",
"kind": "logisticregression",
"name": "Iris LR",
"name_options": "L2 regularized (c=1), bias, auto-scaled, missing

→˓values, eps=0.001"
},
{

"id": "linearregression/5c8f576e1f386f7dc3000048",
"kind": "linearregression",
"name": "Iris Linear Regression",
"name_options": "bias"

}
]

},
"importance": {

"000000": 0.05847,
"000001": 0.03028,
"000002": 0.13582,
"000003": 0.4421

},
"model_count": {

"ensemble": 1,
"linearregression": 1,
"logisticregression": 1,
"model": 1,
"total": 3

},
"models": [

"ensemble/5af272eb4e1727d378000050",
"model/5af272fe4e1727d3780000d6",
"linearregression/5c8f576e1f386f7dc3000048",
"logisticregression/5af272ff4e1727d3780000d9"

],
"models_meta": {

"count": 3,
"limit": 1000,
"offset": 0,
"total": 3

},
"name": "iris",
"name_options": "3 total models (ensemble: 1, linearregression: 1,

→˓logisticregression: 1, model: 1)",
(continues on next page)

58 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"number_of_batchpredictions": 0,
"number_of_evaluations": 0,
"number_of_predictions": 0,
"number_of_public_predictions": 0,
"objective_field": "000004",
"objective_field_details": {

"column_number": 4,
"datatype": "string",
"name": "species",
"optype": "categorical",
"order": 4

},
"objective_field_name": "species",
"objective_field_type": "categorical",
"objective_fields": [

"000004"
],
"private": true,
"project": null,
"resource":"fusion/59af8107b8aa0965d5b61138",
"shared": false,
"status": {

"code": 5,
"elapsed": 8420,
"message": "The fusion has been created",
"progress": 1

},
"subscription": false,
"tags": [],
"type": 0,
"updated": "2018-05-09T20:11:14.258000"

}

1.4 Resources

1.4.1 Creating Resources

Newly-created resources are returned in a dictionary with the following keys:

• code: If the request is successful you will get a HTTP_CREATED (201) status code. In asynchronous file
uploading api.createSource calls, it will contain HTTP_ACCEPTED (202) status code. Otherwise, it will
be one of the standard HTTP error codes detailed in the documentation.

• resource: The identifier of the new resource.

• location: The location of the new resource.

• object: The resource itself, as computed by BigML.

• error: If an error occurs and the resource cannot be created, it will contain an additional code and a description
of the error. In this case, location, and resource will be None.

1.4. Resources 59

https://bigml.com/api/status_codes

bigml-java Documentation, Release master

Statuses

Please, bear in mind that resource creation is almost always asynchronous (predictions are the only exception). There-
fore, when you create a new source, a new dataset or a new model, even if you receive an immediate response from
the BigML servers, the full creation of the resource can take from a few seconds to a few days, depending on the size
of the resource and BigML’s load. A resource is not fully created until its status is FINISHED. See the documentation
on status codes for the listing of potential states and their semantics. So depending on your application you might need
to import the following constants:

import org.bigml.binding.resources.AbstractResource;

AbstractResource.FINISHED
AbstractResource.QUEUED
AbstractResource.STARTED
AbstractResource.IN_PROGRESS
AbstractResource.SUMMARIZED
AbstractResource.FINISHED
AbstractResource.UPLOADING
AbstractResource.FAULTY
AbstractResource.UNKNOWN
AbstractResource.RUNNABLE

Usually, you will simply need to wait until the resource is in the FINISHED state for further processing. If that’s the
case, the easiest way is calling the api.xxxIsReady method and passing as first argument the object that contains
your resource:

import org.bigml.binding.BigMLClient;

// Create BigMLClient with the properties in binding.properties
BigMLClient api = new BigMLClient();

// creates a source object
JSONObject source = api.createSource("my_file.csv");

// checks that the source is finished and updates ``source``
while (!api.sourceIsReady(source))

Thread.sleep(1000);

In this code, api.createSource will probably return a non-finished source object. Then, api.
sourceIsReadywill query its status and update the contents of the source variable with the retrieved information
until it reaches a FINISHED or FAILED status.

Remember that, consequently, you will need to retrieve the resources explicitly in your code to get the updated infor-
mation.

Projects

A special kind of resource is project. Projects are repositories for resources, intended to fulfill organizational
purposes. Each project can contain any other kind of resource, but the project that a certain resource belongs to is
determined by the one used in the source they are generated from. Thus, when a source is created and assigned a
certain project_id, the rest of resources generated from this source will remain in this project.

The REST calls to manage the project resemble the ones used to manage the rest of resources. When you create a
project:

60 Chapter 1. Additional Information

https://bigml.com/api/status_codes
https://bigml.com/api/status_codes

bigml-java Documentation, Release master

import org.bigml.binding.BigMLClient;

// Create BigMLClient with the properties in binding.properties
BigMLClient api = new BigMLClient();

JSONObject project = api.createProject({"name": "my first project"});

the resulting resource is similar to the rest of resources, although shorter:

{
"code": 201,
"resource": "project/54a1bd0958a27e3c4c0002f0",
"location": "http://bigml.io/andromeda/project/54a1bd0958a27e3c4c0002f0",
"object": {

"category": 0,
"updated": "2014-12-29T20:43:53.060045",
"resource": "project/54a1bd0958a27e3c4c0002f0",
"name": "my first project",
"created": "2014-12-29T20:43:53.060013",
"tags": [],
"private": True,
"dev": None,
"description": ""

},
"error": None

}

and you can use its project id to get, update or delete it:

JSONObject project = api.getProject("project/54a1bd0958a27e3c4c0002f0");
String resource = (String) Utils.getJSONObject(

project, "resource");
api.updateProject(resource,

{'description': 'This is my first project'});

api.deleteProject(resource);

Important: Deleting a non-empty project will also delete all resources assigned to it, so please be extra-careful when
using the api.deleteProject call.

External Connectors

To create an external connector to an existing database you need to use the createExternalConnector method.
The only two required parameters are the the name of the external data source to connect to (allowed types are:
elasticsearch, postgresql, mysql, sqlserver) and the dictionary that contains the information needed
to connect to the particular database/table. The attributes of the connection dictionary needed for the method to work
will depend on the type of database used.

For instance, you can create a connection to an Elasticsearch database hosted locally at port 9200 by calling:

import org.bigml.binding.BigMLClient;

// Create BigMLClient with the properties in binding.properties
BigMLClient api = new BigMLClient();

(continues on next page)

1.4. Resources 61

bigml-java Documentation, Release master

(continued from previous page)

JSONObject connectionInfo = JSONValue.parse(
"{\"hosts\": [\"elasticsearch\"]}"

);
JSONObject externalConnector = api.createExternalConnector(

elasticsearch, connectionInfo);

Sources

To create a source from a local data file, you can use the createSource method. The only required parameter is
the path to the data file (or file-like object). You can use a second optional parameter to specify any of the options for
source creation described in the BigML API documentation.

Here’s a sample invocation:

import org.bigml.binding.BigMLClient;

// Create BigMLClient with the properties in binding.properties
BigMLClient api = new BigMLClient();

JSONObject args = JSONValue.parse(
"{\"name\": \"my source\",

\"source_parser\": {\"missing_tokens\": [\"?\""]}}"
);
JSONObject source = api.createSource("./data/iris.csv", args);

or you may want to create a source from a file in a remote location:

source = api.createRemoteSource("s3://bigml-public/csv/iris.csv", args)

or using data stored in a local java variable. The following example shows the two accepted formats:

String inline = "[{\"a\": 1, \"b\": 2, \"c\": 3},
{\"a\": 4, \"b\": 5, \"c\": 6}]";

JSONObject args = JSONValue.parse("{\"name\": \"inline source\"}");
JSONObject source = api.createInlineSource(

inline, {'name': 'inline source'});

As already mentioned, source creation is asynchronous. In both these examples, the api.createSource call
returns once the file is uploaded. Then source will contain a resource whose status code will be either WAITING or
QUEUED.

Datasets

Once you have created a source, you can create a dataset. The only required argument to create a dataset is a source
id. You can add all the additional arguments accepted by BigML and documented in the Datasets section of the
Developer’s documentation.

For example, to create a dataset named “my dataset” with the first 1024 bytes of a source, you can submit the following
request:

62 Chapter 1. Additional Information

https://bigml.com/api/sources
https://bigml.com/api/datasets
https://bigml.com/api/datasets

bigml-java Documentation, Release master

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my dataset\", \"size\": 1024}");

JSONObject dataset = api.createDataset(source, args);

Upon success, the dataset creation job will be queued for execution, and you can follow its evolution using api.
datasetIsReady(dataset).

As for the rest of resources, the create method will return an incomplete object, that can be updated by issuing the
corresponding api.getDataset call until it reaches a FINISHED status. Then you can export the dataset data to
a CSV file using:

api.downloadDataset("dataset/526fc344035d071ea3031d75",
filename="my_dir/my_dataset.csv");

You can also extract samples from an existing dataset and generate a new one with them using the api.
createDataset method. The first argument should be the origin dataset and the rest of arguments that set the
range or the sampling rate should be passed as a dictionary. For instance, to create a new dataset extracting the 80%
of instances from an existing one, you could use:

JSONObject originDataset = api.createSataset(source);
JSONObject sampleArgs = JSONValue.parseValue("{\"sample_rate\": 0.8}");
JSONObjectdataset = api.createDataset(originDataset, sampleArgs);

Similarly, if you want to split your source into training and test datasets, you can set the sample_rate as before
to create the training dataset and use the out_of_bag option to assign the complementary subset of data to the test
dataset. If you set the seed argument to a value of your choice, you will ensure a deterministic sampling, so that each
time you execute this call you will get the same datasets as a result and they will be complementary:

JSONObject originDataset = api.createSataset(source);

JSONObject trainArgs = JSONValue.parseValue(
"{\"name\": \"Dataset Name | Training\",
\"sample_rate\": 0.8,
\"seed\": \"my seed\"}");

JSONObject trainDataset = api.createDataset(originDataset, trainArgs);

JSONObject testArgs = JSONValue.parseValue(
"{\"name\": \"Dataset Name | Test\",
\"sample_rate\": 0.8,
\"seed\": \"my seed\",
\"out_of_bag\": true}");

JSONObject testDataset = api.createDataset(originDataset, testArgs);

Sometimes, like for time series evaluations, it’s important that the data in your train and test datasets is ordered. In this
case, the split cannot be done at random. You will need to start from an ordered dataset and decide the ranges devoted
to training and testing using the range attribute:

JSONObject originDataset = api.createSataset(source);

JSONObject trainArgs = JSONValue.parseValue(
"{\"name\": \"Dataset Name | Training\",
\"range\": [1, 80]}");

JSONObject trainDataset = api.createDataset(originDataset, trainArgs);

JSONObject testArgs = JSONValue.parseValue(
"{\"name\": \"Dataset Name | Test\",

(continues on next page)

1.4. Resources 63

bigml-java Documentation, Release master

(continued from previous page)

\"range\": [81, 100]}");
JSONObject testDataset = api.createDataset(originDataset, testArgs);

It is also possible to generate a dataset from a list of datasets (multidataset):

JSONObject dataset1 = api.createDataset(source1);
JSONObject dataset2 = api.createDataset(source2);
List datasetsIds = new ArrayList();
datasetsIds.add(dataset1);
datasetsIds.add(dataset2);
JSONObject multidataset = api.createDataset(datasetsIds);

Clusters can also be used to generate datasets containing the instances grouped around each centroid. You will need
the cluster id and the centroid id to reference the dataset to be created. For instance,

JSONObject cluster = api.createCluster(dataset);
JSONObject args = JSONValue.parseValue("{\"centroid\": \"000000\"}");
JSONObject clusterDataset1 = api.createDataset(cluster, args);

would generate a new dataset containing the subset of instances in the cluster associated to the centroid id 000000.

Models

Once you have created a dataset you can create a model from it. If you don’t select one, the model will use the last field
of the dataset as objective field. The only required argument to create a model is a dataset id. You can also include in
the request all the additional arguments accepted by BigML and documented in the Models section of the Developer’s
documentation.

For example, to create a model only including the first two fields and the first 10 instances in the dataset, you can use
the following invocation:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my model\",
\"input_fields\": [\"000000\", \"000001\"],
\"range\": [1, 10]}");

JSONObject model = api.createModel(dataset, args);

Again, the model is scheduled for creation, and you can retrieve its status at any time by means of api.
modelIsReady(model).

Models can also be created from lists of datasets. Just use the list of ids as the first argument in the api call

JSONObject dataset1 = api.createDataset(source1);
JSONObject dataset2 = api.createDataset(source2);
List datasetsIds = new ArrayList();
datasetsIds.add(dataset1);
datasetsIds.add(dataset2);
JSONObject args = JSONValue.parseValue(

"{\"name\": \"my model\",
\"input_fields\": [\"000000\", \"000001\"],
\"range\": [1, 10]}");

JSONObject model = api.createModel(datasetsIds, args);

And they can also be generated as the result of a clustering procedure. When a cluster is created, a model that predicts
if a certain instance belongs to a concrete centroid can be built by providing the cluster and centroid ids:

64 Chapter 1. Additional Information

https://bigml.com/api/models
https://bigml.com/api/models

bigml-java Documentation, Release master

JSONObject cluster = api.createCluster(dataset);
JSONObject args = JSONValue.parseValue(

"{\"name\": \"model for centroid 000001\",
\"centroid\": \"000001\"}");

JSONObject model = api.createModel(cluster, args);

if no centroid id is provided, the first one appearing in the cluster is used.

Clusters

If your dataset has no fields showing the objective information to predict for the training data, you can still build a
cluster that will group similar data around some automatically chosen points (centroids). Again, the only required
argument to create a cluster is the dataset id. You can also include in the request all the additional arguments accepted
by BigML and documented in the Clusters section of the Developer’s documentation.

Let’s create a cluster from a given dataset:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my cluster\", \"k\": 5}");

JSONObject cluster = api.createCluster(dataset, args);

that will create a cluster with 5 centroids.

Anomaly detectors

If your problem is finding the anomalous data in your dataset, you can build an anomaly detector, that will use iforest
to single out the anomalous records. Again, the only required argument to create an anomaly detector is the dataset id.
You can also include in the request all the additional arguments accepted by BigML and documented in the Anomaly
detectors section of the Developer’s documentation.

Let’s create an anomaly detector from a given dataset:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my anomaly\"}");

JSONObject anomaly = api.createAnomaly(dataset, args);

that will create an anomaly resource with a top_anomalies block of the most anomalous points.

Associations

To find relations between the field values you can create an association discovery resource. The only re-
quired argument to create an association is a dataset id. You can also include in the request all the addi-
tional arguments accepted by BigML and documented in the [Association section of the Developer’s documenta-
tion](https://bigml.com/api/associations.

For example, to create an association only including the first two fields and the first 10 instances in the dataset, you
can use the following invocation:

1.4. Resources 65

https://bigml.com/api/clusters
https://bigml.com/api/anomalies
https://bigml.com/api/anomalies

bigml-java Documentation, Release master

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my association\",
\"input_fields\": [\"000000\", \"000001\"],
\"range\": [1, 10]}");

JSONObject association = api.createAssociation(dataset, args);

Again, the association is scheduled for creation, and you can retrieve its status at any time by means of api.
associtionIsReady(association).

Associations can also be created from lists of datasets. Just use the list of ids as the first argument in the api call

List datasetsIds = new ArrayList();
datasetsIds.add(dataset1);
datasetsIds.add(dataset2);
JSONObject args = JSONValue.parseValue(

"{\"name\": \"my association\",
\"input_fields\": [\"000000\", \"000001\"],
\"range\": [1, 10]}");

JSONObject association = api.createAssociation(dataset, args);

Topic models

To find which topics do your documents refer to you can create a topic model. The only required argument to create a
topic model is a dataset id. You can also include in the request all the additional arguments accepted by BigML and
documented in the Topic Model section of the Developer’s documentation.

For example, to create a topic model including exactly 32 topics you can use the following invocation:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my topics\",
\"number_of_topics\": 32}");

JSONObject topicModel = api.createTopicModel(dataset, args);

Again, the topic model is scheduled for creation, and you can retrieve its status at any time by means of api.
topicModelIsReady(topicModel).

Topic models can also be created from lists of datasets. Just use the list of ids as the first argument in the api call.

List datasetsIds = new ArrayList();
datasetsIds.add(dataset1);
datasetsIds.add(dataset2);
JSONObject args = JSONValue.parseValue(

"{\"name\": \"my topics\",
\"number_of_topics\": 32}");

JSONObject topicModel = api.createTopicModel(datasetsIds, args);

Time series

To forecast the behaviour of any numeric variable that depends on its historical records you can use a time series.
The only required argument to create a time series is a dataset id. You can also include in the request all the ad-
ditional arguments accepted by BigML and documented in the [Time Series section of the Developer’s documenta-
tion](https://bigml.com/api/timeseries.

66 Chapter 1. Additional Information

https://bigml.com/api/topicmodels

bigml-java Documentation, Release master

For example, to create a time series including a forecast of 10 points for the numeric values you can use the following
invocation:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my time series\",
\"horizon\": 10}");

JSONObject timeSeries = api.createTimeSeries(dataset, args);

Again, the time series is scheduled for creation, and you can retrieve its status at any time by means of api.
timeSeriesIsReady(timeSeries).

Time series also be created from lists of datasets. Just use the list of ids as the first argument in the api call

List datasetsIds = new ArrayList();
datasetsIds.add(dataset1);
datasetsIds.add(dataset2);
JSONObject args = JSONValue.parseValue(

"{\"name\": \"my time series\",
\"horizon\": 10}");

JSONObject timeSeries = api.createTimeSeries(datasetsIds, args);

OptiML

To create an OptiML, the only required argument is a dataset id. You can also include in the request all the additional
arguments accepted by BigML and documented in the OptiML section of the Developer’s documentation.

For example, to create an OptiML which optimizes the accuracy of the model you can use the following method

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my optiml\",
\"metric\": \"accuracy\"}");

JSONObject optiml = api.createOptiML(dataset, args);

The OptiML is then scheduled for creation, and you can retrieve its status at any time by means of api.
optiMLIsReady(optiml).

Fusion

To create a Fusion, the only required argument is a list of models. You can also include in the request all the additional
arguments accepted by BigML and documented in the Fusion section of the Developer’s documentation.

For example, to create a Fusion you can use this connection method:

List modelsIds = new ArrayList();
modelsIds.add("model/5af06df94e17277501000010");
modelsIds.add("model/5af06df84e17277502000019");
modelsIds.add("deepnet/5af06df84e17277502000016");
modelsIds.add("ensemble/5af06df74e1727750100000d");
JSONObject args = JSONValue.parseValue("{\"name\": \"my fusion\"}");
JSONObject fusion = api.createFusion(modelsIds, args);

1.4. Resources 67

https://bigml.com/api/optimls
https://bigml.com/api/fusions

bigml-java Documentation, Release master

The Fusion is then scheduled for creation, and you can retrieve its status at any time by means of api.
fusionIsReady(fusion).

Fusions can also be created by assigning some weights to each model in the list. In this case, the argument for the
create call will be a list of dictionaries that contain the id and weight keys:

JSONArray models = JSONValue.parseValue(
"[{\"id\": \"model/5af06df94e17277501000010\", \"weight\": 10},
{\"id\": \"model/5af06df84e17277502000019\", \"weight\": 20},
{\"id\": \"deepnet/5af06df84e17277502000016\",\"weight\": 5}]}");

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my weighted fusion\"}");

JSONObject fusion = api.createFusion(models, args);

Predictions

You can now use the model resource identifier together with some input parameters to ask for predictions, using the
createPrediction method. You can also give the prediction a name:

JSONObject inputData = JSONValue.parseValue(
"{\"sepal length\": 5,
\"sepal width\": 2.5});

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my prediction\"}");

JSONObject prediction = api.createPrediction(
"model/5af272fe4e1727d3780000d6", inputData, args);

Predictions can be created using any supervised model (model, ensemble, logistic regression, linear regression, deepnet
and fusion) as first argument.

Centroids

To obtain the centroid associated to new input data, you can now use the createCentroid method. Give the
method a cluster identifier and the input data to obtain the centroid. You can also give the centroid predicition a name:

JSONObject inputData = JSONValue.parseValue(
"{\"pregnancies\": 0,
\"plasma glucose\": 118,
\"blood pressure\": 84,
\"triceps skin thickness\": 47}");

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my centroid\"}");

JSONObject centroid = api.createCentroid(
"cluster/56c42ea47e0a8d6cca0151a0", inputData, args);

Anomaly scores

To obtain the anomaly score associated to new input data, you can now use the createAnomalyScore method.
Give the method an anomaly detector identifier and the input data to obtain the score:

68 Chapter 1. Additional Information

bigml-java Documentation, Release master

JSONObject inputData = JSONValue.parseValue(
"{\"src_bytes\": 350}");

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my score\"}");

anomaly_score = api.create_anomaly_score(
"anomaly/56c432728a318f66e4012f82", inputData, args);

Association sets

Using the association resource, you can obtain the consequent items associated by its rules to your input data. These
association sets can be obtained calling the createAssociationSetmethod. The first argument is the association
ID and the next one is the input data.

JSONObject inputData = JSONValue.parseValue(
"{\"genres\": \"Action$Adventure\"}");

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my association set\"}");

JSONObject associationSet = api.createAssociationSet(
"association/5621b70910cb86ae4c000000", inputData);

Topic distributions

To obtain the topic distributions associated to new input data, you can now use the createTopicDistribution
method. Give the method a topic model identifier and the input data to obtain the score:

JSONObject inputData = JSONValue.parseValue(
"{\"Message\": \"The bubble exploded in 2007.\"}");

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my topic distribution\"}");

JSONObject topicDistribution = api.createTopicDistribution(
"topicmodel/58362aaa983efc45a1000007", inputData, args);

Forecasts

To obtain the forecast associated to a numeric variable, you can now use the createForecast method. Give the
method a time series identifier and the input data to obtain the forecast:

JSONObject inputData = JSONValue.parseValue(
"{\"Final\": {\"horizon\": 10}}");

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my forecast\"}");

JSONObject forecast = api.createForecast(
"timeseries/596a0f66983efc53f3000000", inputData, args);

1.4. Resources 69

bigml-java Documentation, Release master

Evaluations

Once you have created a supervised learning model, you can measure its perfomance by running a dataset of test data
through it and comparing its predictions to the objective field real values. Thus, the required arguments to create an
evaluation are model id and a dataset id. You can also include in the request all the additional arguments accepted by
BigML and documented in the Evaluations section of the Developer’s documentation.

For instance, to evaluate a previously created model using an existing dataset you can use the following call:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my evaluation\"}");

JSONObject evaluation = api.createEvaluation(
"model/5afde64e8bf7d551fd005131",
"dataset/5afde6488bf7d551ee00081c",
args);

Again, the evaluation is scheduled for creation and api.evaluationIsReady(evaluation) will show its
state.

Evaluations can also check the ensembles’ performance. To evaluate an ensemble you can do exactly what we just did
for the model case, using the ensemble object instead of the model as first argument:

JSONObject evaluation = api.createEvaluation(
"ensemble/5af272eb4e1727d378000050",
"dataset/5afde6488bf7d551ee00081c");

Evaluations can be created using any supervised model (including time series) as first argument.

Ensembles

To improve the performance of your predictions, you can create an ensemble of models and combine their individual
predictions. The only required argument to create an ensemble is the dataset id:

JSONObject ensemble = api.createEnsemble(
"dataset/5143a51a37203f2cf7000972");

BigML offers three kinds of ensembles. Two of them are known as Decision Forests because they are built
as collections of Decision trees whose predictions are aggregated using different combiners (plurality,
confidence weighted, probability weighted) or setting a threshold to issue the ensemble’s predic-
tion. All Decision Forests use bagging to sample the data used to build the underlying models.

As an example of how to create a Decision Forest with 20 models, you only need to provide the dataset ID that
you want to build the ensemble from and the number of models:

JSONObject args = JSONValue.parseValue(
"{\"number_of_models\": 20}");

JSONObject ensemble = api.createEnsemble(
"dataset/5143a51a37203f2cf7000972", args);

If no number_of_models is provided, the ensemble will contain 10 models.

Random Decision Forests fall also into the Decision Forest category, but they only use a subset of the
fields chosen at random at each split. To create this kind of ensemble, just use the randomize option:

70 Chapter 1. Additional Information

https://bigml.com/api/evaluations

bigml-java Documentation, Release master

JSONObject args = JSONValue.parseValue(
"{\"number_of_models\": 20,
\"randomize\": true}");

JSONObject ensemble = api.createEnsemble(
"dataset/5143a51a37203f2cf7000972", args);

The third kind of ensemble is Boosted Trees. This type of ensemble uses quite a different algorithm. The trees
used in the ensemble don’t have as objective field the one you want to predict, and they don’t aggregate the underlying
models’ votes. Instead, the goal is adjusting the coefficients of a function that will be used to predict. The models’
objective is, therefore, the gradient that minimizes the error of the predicting function (when comparing its output with
the real values). The process starts with some initial values and computes these gradients. Next step uses the previous
fields plus the last computed gradient field as the new initial state for the next iteration. Finally, it stops when the error
is smaller than a certain threshold or iterations reach a user-defined limit. In classification problems, every category
in the ensemble’s objective field would be associated with a subset of the Boosted Trees. The objective of each
subset of trees is adjustig the function to the probability of belonging to this particular category.

In order to build an ensemble of Boosted Trees you need to provide the boosting attributes. You can learn
about the existing attributes in the ensembles’ section of the API documentation, but a typical attribute to be set would
be the maximum number of iterations:

args = {'boosting': {'iterations': 20}}
ensemble = api.create_ensemble('dataset/5143a51a37203f2cf7000972', args)

JSONObject args = JSONValue.parseValue(
"{\"boosting\": {\"iterations\": 20}");

JSONObject ensemble = api.createEnsemble(
"dataset/5143a51a37203f2cf7000972", args);

Linear regressions

For regression problems, you can choose also linear regressions to model your data. Linear regressions expect the
predicted value for the objective field to be computable as a linear combination of the predictions.

As the rest of models, linear regressions can be created from a dataset by calling the corresponding create method:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my linear regression\",
\"objective_field\": \"my_objective_field\"}");

JSONObject linearRegression = api.createLinearRegression(
"dataset/5143a51a37203f2cf7000972", args);

In this example, we created a linear regression named my linear regression and set the objec-
tive field to be my_objective_field. Other arguments, like bias, can also be specified as at-
tributes in arguments dictionary at creation time. Particularly for categorical fields, there are three dif-
ferent available ‘field_codingsoptions (contrast,otheror thedummydefault coding). For a more
detailed description of thefield_codings‘‘ attribute and its syntax, please see the Developers API Docu-
mentation.

Logistic regressions

1.4. Resources 71

https://bigml.com/api/ensembles#es_gradient_boosting
https://bigml.com/api/linearregressions#lr_linear_regression_arguments
https://bigml.com/api/linearregressions#lr_linear_regression_arguments

bigml-java Documentation, Release master

For classification problems, you can choose also logistic regressions to model your data. Logistic regressions compute
a probability associated to each class in the objective field. The probability is obtained using a logistic function, whose
argument is a linear combination of the field values.

As the rest of models, logistic regressions can be created from a dataset by calling the corresponding create method:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my logistic regression\",
\"objective_field\": \"my_objective_field\"}");

JSONObject logisticRegression = api.createLogisticRegression(
"dataset/5143a51a37203f2cf7000972", args);

In this example, we created a logistic regression named my logistic regression and set the objective field
to be my_objective_field. Other arguments, like bias, missing_numerics and c can also be spec-
ified as attributes in arguments dictionary at creation time. Particularly for categorical fields, there are four dif-
ferent available ‘field_codingsoptions (dummy,contrast,otheror theone-hotdefault coding). For a
more detailed description of thefield_codings‘‘ attribute and its syntax, please see the Developers API
Documentation.

Deepnets

Deepnets can also solve classification and regression problems. Deepnets are an optimized version of Deep Neural
Networks, a class of machine-learned models inspired by the neural circuitry of the human brain. In these classifiers,
the input features are fed to a group of “nodes” called a “layer”. Each node is essentially a function on the input
that transforms the input features into another value or collection of values. Then the entire layer transforms an input
vector into a new “intermediate” feature vector. This new vector is fed as input to another layer of nodes. This process
continues layer by layer, until we reach the final “output” layer of nodes, where the output is the network’s prediction:
an array of per-class probabilities for classification problems or a single, real value for regression problems.

Deepnets predictions compute a probability associated to each class in the objective field for classification problems.
As the rest of models, deepnets can be created from a dataset by calling the corresponding create method:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my deepnet\",
\"objective_field\": \"my_objective_field\"}");

JSONObject deepnet = api.createDeepnet
"dataset/5143a51a37203f2cf7000972", args);

In this example, we created a deepnet named my deepnet and set the objective field to be
my_objective_field. Other arguments, like number_of_hidden_layers, learning_rate and
missing_numerics can also be specified as attributes in an arguments dictionary at creation time. For a more
detailed description of the available attributes and its syntax, please see the Developers API Documentation.

Batch predictions

We have shown how to create predictions individually, but when the amount of predictions to make increases, this
procedure is far from optimal. In this case, the more efficient way of predicting remotely is to create a dataset
containing the input data you want your model to predict from and to give its id and the one of the model to the
createBatchPrediction api call:

72 Chapter 1. Additional Information

https://bigml.com/api/logisticregressions#lr_logistic_regression_arguments
https://bigml.com/api/logisticregressions#lr_logistic_regression_arguments
https://tropo.dev.bigml.com/api/deepnets#dn_deepnet_arguments

bigml-java Documentation, Release master

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my batch prediction\",
\"all_fields\": true,
\"header\": true,
\"confidence\": true}");

JSONObject batchPrediction = api.createBatchPrediction(
"model/5af06df94e17277501000010",
"dataset/5143a51a37203f2cf7000972",
args);

In this example, setting all_fields to true causes the input data to be included in the prediction output, header
controls whether a headers line is included in the file or not and confidence set to true causes the confidence of the
prediction to be appended. If none of these arguments is given, the resulting file will contain the name of the objective
field as a header row followed by the predictions.

As for the rest of resources, the create method will return an incomplete object, that can be updated by issuing the
corresponding api.getBatchPrediction call until it reaches a FINISHED status. Then you can download the
created predictions file using:

api.downloadBatchPrediction(
"batchprediction/526fc344035d071ea3031d70",
"my_dir/my_predictions.csv");

that will copy the output predictions to the local file given in the second param.

The output of a batch prediction can also be transformed to a source object using the
createSourceFromBatchPrediction method in the api:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my_batch_prediction_source\"}");

api.createSourceFromBatchPrediction(
"batchprediction/526fc344035d071ea3031d70", null, args);

This code will create a new source object, that can be used again as starting point to generate datasets.

Batch centroids

As described in the previous section, it is also possible to make centroids’ predictions in batch. First you create a
dataset containing the input data you want your cluster to relate to a centroid. The createBatchCentroid call
will need the id of the input data dataset and the cluster used to assign a centroid to each instance:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my batch centroid\",
\"all_fields\": true,
\"header\": true}");

JSONObject batchCentroid = api.createBatchCrediction(
"cluster/5af06df94e17277501000010",
"dataset/5143a51a37203f2cf7000972",
args);

Batch anomaly scores

1.4. Resources 73

bigml-java Documentation, Release master

Input data can also be assigned an anomaly score in batch. You train an anomaly detector with your training data and
then build a dataset from your input data. The createBatchAnomalyScore call will need the id of the dataset
and of the anomaly detector to assign an anomaly score to each input data instance:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my batch anomaly score\",
\"all_fields\": true,
\"header\": true}");

JSONObject batchAnomalyScore = api.createBatchAnomalyScore(
"anomaly/5af06df94e17277501000010",
"dataset/5143a51a37203f2cf7000972",
args);

Batch topic distributions

Input data can also be assigned a topic distribution in batch. You train a topic model with your training data and then
build a dataset from your input data. The createBatchTopicDistribution call will need the id of the dataset
and of the topic model to assign a topic distribution to each input data instance:

JSONObject args = JSONValue.parseValue(
"{\"name\": \"my batch topic distribution\",
\"all_fields\": true,
\"header\": true}");

JSONObject batchTopicDistribution = api.createBatchTopicDistribution(
"topicmodel/58362aaa983efc45a1000007",
"dataset/5143a51a37203f2cf7000972",
args);

1.4.2 Reading Resources

When retrieved individually, resources are returned as a dictionary identical to the one you get when you create a new
resource. However, the status code will be HTTP_OK if the resource can be retrieved without problems, or one of the
HTTP standard error codes otherwise.

1.4.3 Listing Resources

You can list resources with the appropriate api method:

api.listSources(null);
api.listDatasets(null);
api.listModels(null);
api.listPredictions(null);
api.listEvaluations(null);
api.listEnsembles(null);
api.listBatchPredictions(null);
api.listClusters(null);
api.listCentroids(null);
api.listBatchCentroids(null);
api.listAnomalies(null);
api.listAnomalyScores(null);
api.listBatchAnomalyScores(null);

(continues on next page)

74 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

api.listProjects(null);
api.listSamples(null);
api.listCorrelations(null);
api.listStatisticalTests(null);
api.listLogisticRegressions(null);
api.listLinearRegressions(null);
api.listAssociations(null);
api.listAssociationSets(null);
api.listTopicModels(null);
api.listTopicDistributions(null);
api.listBatchTopicDistributions(null);
api.listTimeSeries(null);
api.listForecasts(null);
api.listDeepnets(null);
api.listScripts(null);
api.listLibraries(null);
api.listExecutions(null);
api.listExternalConnectors();

you will receive a dictionary with the following keys:

• code: If the request is successful you will get a HTTP_OK (200) status code. Otherwise, it will be one of the
standard HTTP error codes. See BigML documentation on status codes for more info.

• meta: A dictionary including the following keys that can help you paginate listings:

– previous: Path to get the previous page or None if there is no previous page.

– next: Path to get the next page or None if there is no next page.

– offset: How far off from the first entry in the resources is the first one listed in the resources key.

– limit: Maximum number of resources that you will get listed in the resources key.

– total_count: The total number of resources in BigML.

• objects: A list of resources as returned by BigML.

• error: If an error occurs and the resource cannot be created, it will contain an additional code and a description
of the error. In this case, meta, and resources will be None.

1.4.4 Filtering resources

In order to filter resources you can use any of the properties labeled as filterable in the BigML documentation. Please,
check the available properties for each kind of resource in their particular section. In addition to specific selectors
you can use two general selectors to paginate the resources list: offset and limit. For details, please check this
requests section.

A few examples:

First 5 sources created before April 1st, 2012 ^^

api.listSources("limit=5;created__lt=2012-04-1");

First 10 datasets bigger than 1MB ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

api.listDatasets("limit=10;size__gt=1048576");

Models with more than 5 fields (columns) ^^

1.4. Resources 75

https://bigml.com/api/status_codes
https://bigml.com/api
https://bigml.com/api/requests#rq_paginating_resources
https://bigml.com/api/requests#rq_paginating_resources

bigml-java Documentation, Release master

api.listModels("columns__gt=5");

Predictions whose model has not been deleted ^^

api.listPredictions("model_status=true");

1.4.5 Ordering Resources

In order to order resources you can use any of the properties labeled as sortable in the BigML documentation. Please,
check the sortable properties for each kind of resources in their particular section. By default BigML paginates the
results in groups of 20, so it’s possible that you need to specify the offset or increase the limit of resources to
returned in the list call. For details, please, check this requests section.

A few examples:

Sources ordered by size ^^^^^^^^^^^^^^^^^^^^^^^

api.listSources("order_by=size");

Datasets created before April 1st, 2012 ordered by size ^^

api.listDatasets("created__lt=2012-04-1;order_by=size");

Models ordered by number of predictions (in descending order). ^^

api.listModels("order_by=-number_of_predictions");

Predictions ordered by name. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

api.listPredictions("order_by=name");

1.4.6 Updating Resources

When you update a resource, it is returned in a dictionary exactly like the one you get when you create a new one.
However the status code will be HTTP_ACCEPTED if the resource can be updated without problems or one of the
HTTP standard error codes otherwise.

JSONObjects args = new JSONObject();
args.put("name", "new name");

api.updateSource(source, args);
api.updateDataset(dataset, args);
api.updateModel(model, args);
api.updatePrediction(prediction, args);
api.updateEvaluation(evaluation, args);
api.updateEnsemble(ensemble, args);
api.updateBatchPrediction(batchPrediction, args);
api.updateCluster(cluster, args);
api.updateCentroid(centroid, args);
api.updateBatchCentroid(batchCentroid, args);
api.updateAnomaly(anomaly, args);
api.updateAnomalyScore(anomalyScore, args);
api.updateBatchAnomalyScore(batchAnomalyScore, args);
api.updateProject(project, args);

(continues on next page)

76 Chapter 1. Additional Information

https://bigml.com/api
https://bigml.com/api/requests#rq_paginating_resources

bigml-java Documentation, Release master

(continued from previous page)

api.updateCorrelation(correlation, args);
api.updateStatisticalTest(statisticalTest, args);
api.updateLogisticRegression(logisticRegression, args);
api.updateLinearcRegression(linearRegression, args);
api.updateAssociation(association, args);
api.updateAssociationSet(associationSet, args);
api.updateTopicModel(topicModel, args);
api.updateTopicDistribution(topicDistribution, args);
api.updateBatchTopicDistribution(batchTopicDistribution, args);
api.updateTimeSeries(timeSeries, args);
api.updateForecast(forecast, args);
api.updateDeepnet(deepnet, args);
api.updateScript(script, args);
api.updateLibrary(library, args);
api.updateExecution(execution, args);
api.updateExternalConnector(externalConnector, args)

Updates can change resource general properties, such as the name or description attributes of a dataset, or
specific properties, like the missing tokens (strings considered as missing values). As an example, let’s say that
your source has a certain field whose contents are numeric integers. BigML will assign a numeric type to the field, but
you might want it to be used as a categorical field. You could change its type to categorical by calling:

JSONObject args = JSONValue.parseValue(
"{\"fields\": {\"000001\": {\"optype\": \"categorical\"}}}");

api.updateSource(source, args);

where 000001 is the field id that corresponds to the updated field.

Another usually needed update is changing a fields’ non-preferred attribute, so that it can be used in the modeling
process:

JSONObject args = JSONValue.parseValue(
"{\"fields\": {\"000001\": {\"preferred\": true}}}");

api.updateDataset(dataset, args);

where you would be setting as preferred the field whose id is 000001.

You may also want to change the name of one of the clusters found in your clustering:

JSONObject args = JSONValue.parseValue(
"{\"clusters\": {\"000001\": {\"name\": \"my cluster\"}}}");

api.updateCluster(cluster, args);

which is changing the name of the cluster whose centroid id is 000001 to my_cluster. Or, similarly, changing the
name of one detected topic:

JSONObject args = JSONValue.parseValue(
"{\"topics\": {\"000001\": {\"name\": \"my topic\"}}}");

api.updateTopicModel(topicModel, args);

You will find detailed information about the updatable attributes of each resource in BigML developer’s documenta-
tion.

1.4.7 Deleting Resources

Resources can be deleted individually using the corresponding method for each type of resource.

1.4. Resources 77

https://bigml.com/api
https://bigml.com/api

bigml-java Documentation, Release master

api.deleteSource(source);
api.deleteDataset(dataset);
api.deleteModel(model);
api.deletePrediction(prediction);
api.deleteEvaluation(evaluation);
api.deleteEnsemble(ensemble);
api.deleteBatchPrediction(batchPrediction);
api.deleteCluster(cluster);
api.deleteCentroid(centroid);
api.deleteBatchCentroid(batchCentroid);
api.deleteAnomaly(anomaly);
api.deleteAnomalyScore(anomalyScore);
api.deleteBatchAnomalyScore(batchAnomalyScore);
api.deleteSample(sample);
api.deleteCorrelation(correlation);
api.deleteStatisticalTest(statisticalTest);
api.deleteLogisticRegression(logisticRegression);
api.deleteLinearRegression(linearRegression);
api.deleteAssociation(association);
api.deleteAssociationSet(associationSet);
api.deleteTopicModel(topicModel);
api.deleteTopicDistribution(topicDistribution);
api.deleteBatchTopicDistribution(batchTopicDistribution);
api.deleteTimeSeries(timeSeries);
api.deleteForecast(forecast);
api.deleteDeepnet(deepnet);
api.deleteProject(project);
api.deleteScript(script);
api.deleteLibrary(library);
api.deleteExecution(execution);
api.deleteExternalConnector(externalConnector)

Each of the calls above will return a dictionary with the following keys:

• code If the request is successful, the code will be a HTTP_NO_CONTENT (204) status code. Otherwise, it wil
be one of the standard HTTP error codes. See the documentation on status codes for more info.

• error If the request does not succeed, it will contain a dictionary with an error code and a message. It will be
None otherwise.

1.4.8 Public and shared resources

The previous examples use resources that were created by the same user that asks for their retrieval or modification. If
a user wants to share one of her resources, she can make them public or share them. Declaring a resource public means
that anyone can see the resource. This can be applied to datasets and models. To turn a dataset public, just update its
private property:

JSONObject args = JSONValue.parseValue(
"{\"private\": false}");

api.updateDataset("dataset/5143a51a37203f2cf7000972", args);

and any user will be able to download it using its id prepended by public:

api.getDataset("public/dataset/5143a51a37203f2cf7000972");

In the models’ case, you can also choose if you want the model to be fully downloadable or just accesible to make
predictions. This is controlled with the white_box property. If you want to publish your model completely, just use:

78 Chapter 1. Additional Information

https://bigml.com/api/status_codes

bigml-java Documentation, Release master

JSONObject args = JSONValue.parseValue(
"{\"private\": false, \"white_box\": true}");

api.updateModel("model/5143a51a37203f2cf7000956"'", args);

Both public models and datasets, will be openly accessible for anyone, registered or not, from the web gallery.

Still, you may want to share your models with other users, but without making them public for everyone. This can be
achieved by setting the shared property:

JSONObject args = JSONValue.parseValue(
"{\"shared\": true}");

api.updateModel("model/5143a51a37203f2cf7000956", args);

Shared models can be accessed using their share hash (propery shared_hash in the original model):

api.getModel("shared/model/d53iw39euTdjsgesj7382ufhwnD");

1.5 Whizzml Resources

Whizzml is a Domain Specific Language that allows the definition and execution of ML-centric workflows. Its objec-
tive is allowing BigML users to define their own composite tasks, using as building blocks the basic resources pro-
vided by BigML itself. Using Whizzml they can be glued together using a higher order, functional, Turing-complete
language. The Whizzml code can be stored and executed in BigML using three kinds of resources: Scripts,
Libraries and Executions.

Whizzml Scripts can be executed in BigML’s servers, that is, in a controlled, fully-scalable environment which
takes care of their parallelization and fail-safe operation. Each execution uses an Execution resource to store
the arguments and results of the process. Whizzml Libraries store generic code to be shared of reused in other
Whizzml Scripts.

1.5.1 Scripts

In BigML a Script resource stores Whizzml source code, and the results of its compilation. Once a Whizzml script
is created, it’s automatically compiled; if compilation succeeds, the script can be run, that is, used as the input for a
Whizzml execution resource.

An example of a script that would create a source in BigML using the contents of a remote file is:

import org.bigml.binding.BigMLClient;

// Create BigMLClient
BigMLClient api = new BigMLClient();

// creating a script directly from the source code. This script creates
// a source uploading data from an s3 repo. You could also create a
// a script by using as first argument the path to a .whizzml file which
// contains your source code.
JSONObject script = api.createScript(

"(create-source {\"remote\" \"s3://bigml-public/csv/iris.csv\"})")

while (!api.scriptIsReady(script))
Thread.sleep(1000);

JSONObject object = (JSONObject) Utils.getJSONObject(script, "object");

1.5. Whizzml Resources 79

bigml-java Documentation, Release master

script object object:

{
"approval_status": 0,
"category": 0,
"code": 200,
"created": "2016-05-18T16:54:05.666000",
"description": "",
"imports": [],
"inputs": None,
"line_count": 1,
"locale": "en-US",
"name": "Script",
"number_of_executions": 0,
"outputs": None,
"price": 0.0,
"private": True,
"project": None,
"provider": None,
"resource": "script/573c9e2db85eee23cd000489",
"shared": False,
"size": 59,
"source_code": "(create-source {"remote" "s3://bigml-public/csv/iris.csv"})",
"status": {

"code": 5,
"elapsed": 4,
"message": "The script has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"updated": "2016-05-18T16:54:05.850000",
"white_box": False

}

A script allows to define some variables as inputs. In the previous example, no input has been defined, but we
could modify our code to allow the user to set the remote file name as input:

import org.bigml.binding.BigMLClient;

// Create BigMLClient
BigMLClient api = new BigMLClient();

JSONArray inputsList = JSONValue.parse(
"[{"name": "my_remote_data",

"type": "string",
"default": "s3://bigml-public/csv/iris.csv",
"description": "Location of the remote data"}]"

);
JSONObject inputs = new JSONObject();
inputs.put("inputs", inputsList);

JSONObject script = api.createScript(
"(create-source {\"remote\" my_remote_data})",
inputs)

while (!api.sctiptIsReady(source))
Thread.sleep(1000);

80 Chapter 1. Additional Information

bigml-java Documentation, Release master

The script can also use a library resource (please, see the Libraries section below for more details) by
including its id in the imports attribute. Other attributes can be checked at the API Developers documentation for
Scripts.

1.5.2 Executions

To execute in BigML a compiled Whizzml script you need to create an execution resource. It’s also possible to
execute a pipeline of many compiled scripts in one request.

Each execution is run under its associated user credentials and its particular environment constaints. As scripts
can be shared, you can execute the same script several times under different usernames by creating different
executions.

As an example of execution resource, let’s create one for the script in the previous section:

import org.bigml.binding.BigMLClient;

// Create BigMLClient
BigMLClient api = new BigMLClient();

JSONObject execution = api.createExecution("script/573c9e2db85eee23cd000489");

while (!api.executionIsReady(execution))
Thread.sleep(1000);

JSONObject object = (JSONObject) Utils.getJSONObject(execution, "object");

execution object object:

{
"category": 0,
"code": 200,
"created": "2016-05-18T16:58:01.613000",
"creation_defaults": { },
"description": "",
"execution": {

"output_resources": [
{

"code": 1,
"id": "source/573c9f19b85eee23c600024a",
"last_update": 1463590681854,
"progress": 0.0,
"state": "queued",
"task": "Queuing job",
"variable": ""

}
],
"outputs": [],
"result": "source/573c9f19b85eee23c600024a",
"results": ["source/573c9f19b85eee23c600024a"],
"sources": [["script/573c9e2db85eee23cd000489", ""]],
"steps": 16

},
"inputs": None,
"locale": "en-US",
"name": u"Script"s Execution",
"project": None,

(continues on next page)

1.5. Whizzml Resources 81

https://bigml.com/api/scripts#ws_script_arguments
https://bigml.com/api/scripts#ws_script_arguments

bigml-java Documentation, Release master

(continued from previous page)

"resource": "execution/573c9f19b85eee23bd000125",
"script": "script/573c9e2db85eee23cd000489",
"script_status": True,
"shared": False,
"status": {

"code": 5,
"elapsed": 249,
"elapsed_times": {

"in-progress": 247,
"queued": 62,
"started": 2

},
"message": "The execution has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"updated": "2016-05-18T16:58:02.035000"

}

An execution receives inputs, the ones defined in the script chosen to be executed, and generates a result. It can
also generate outputs. As you can see, the execution resource contains information about the result of the execution,
the resources that have been generated while executing and users can define some variables in the code to be exported
as outputs. Please refer to the Developers documentation for Executions for details on how to define execution outputs.

1.5.3 Libraries

The library resource in BigML stores a special kind of compiled Whizzml source code that only defines functions
and constants. The library is intended as an import for executable scripts. Thus, a compiled library cannot be
executed, just used as an import in other libraries and scripts (which then have access to all identifiers defined
in the library).

As an example, we build a library to store the definition of two functions: mu and g. The first one adds one to the
value set as argument and the second one adds two variables and increments the result by one.

import org.bigml.binding.BigMLClient;

// Create BigMLClient
BigMLClient api = new BigMLClient();

JSONObject library = api.createLibrary(
"(define (mu x) (+ x 1)) (define (g z y) (mu (+ y z)))");

while (!api.libraryIsReady(library))
Thread.sleep(1000);

JSONObject object = (JSONObject) Utils.getJSONObject(library, "object");

library object object:

{
"approval_status": 0,
"category": 0,
"code": 200,
"created": "2016-05-18T18:58:50.838000",

(continues on next page)

82 Chapter 1. Additional Information

https://bigml.com/api/executions#we_execution_arguments

bigml-java Documentation, Release master

(continued from previous page)

"description": "",
"exports": [

{"name": "m", "signature": ["x"]},
{"name": "g", "signature": ["z", "y"]}

],
"imports": [],
"line_count": 1,
"name": "Library",
"price": 0.0,
"private": True,
"project": None,
"provider": None,
"resource": "library/573cbb6ab85eee23c300018e",
"shared": False,
"size": 53,
"source_code": "(define (mu x) (+ x 1)) (define (g z y) (mu (+ y z)))",
"status": {

"code": 5,
"elapsed": 2,
"message": "The library has been created",
"progress": 1.0

},
"subscription": True,
"tags": [],
"updated": "2016-05-18T18:58:52.432000",
"white_box": False

}

Libraries can be imported in scripts. The imports attribute of a script can contain a list of library IDs whose
defined functions and constants will be ready to be used throughout the script. Please, refer to the API Developers
documentation for Libraries for more details.

1.6 Local Resources

All the resources in BigML can be saved in json format and used locally with no connection whatsoever to BigML’s
servers. This is specially important for all Supervised and Unsupervised models, that can be used to generate predic-
tions in any programmable device. The next sections describe how to do that for each type of resource.

This json can be used just as the remote model to generate predictions. As you’ll see in next section, the local Model
object can be instantiated by giving json as first argument:

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalPredictiveModel;

// Create BigMLClient with the properties in binding.properties
BigMLClient api = new BigMLClient();

// Get remote model
JSONObject model = api.getModel("model/502fdbff15526876610002615");

// Create local model
LocalPredictiveModel localModel = new LocalPredictiVeModel(model);

// Predict

(continues on next page)

1.6. Local Resources 83

https://bigml.com/api/libraries#wl_library_arguments
https://bigml.com/api/libraries#wl_library_arguments

bigml-java Documentation, Release master

(continued from previous page)

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localModel.predict(inputData);

1.6.1 Local Models

You can instantiate a local version of a remote model.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalPredictiveModel;

BigMLClient api = new BigMLClient();

// Get remote model
JSONObject model = api.getModel("model/502fdbff15526876610002615");

// Create local model
LocalPredictiveModel localModel = new LocalPredictiVeModel(model);

This will retrieve the remote model information, using an implicitly built BigML() connection object (see the
Authentication section for more details on how to set your credentials) and return a Model object that you
can use to make local predictions.

Local Predictions

Once you have a local model you can use to generate predictions locally.

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localModel.predict(inputData);

Local predictions have three clear advantages:

• Removing the dependency from BigML to make new predictions.

• No cost (i.e., you do not spend BigML credits).

• Extremely low latency to generate predictions for huge volumes of data.

The default output for local predictions is the prediction itself, but you can also add other properties associated to the
prediction, like its confidence or probability, the distribution of values in the predicted node (for decision tree models),
and the number of instances supporting the prediction. To obtain a dictionary with the prediction and the available
additional properties use the full=True argument:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localModel.predict(inputData, null, null, null, true);

that will return:

84 Chapter 1. Additional Information

bigml-java Documentation, Release master

{
"count": 47,
"confidence": 0.92444,
"probability": 0.9861111111111112,
"prediction": "Iris-versicolor",
"distribution_unit": "categories",
"path": ["petal length > 2.45",

"petal width <= 1.75",
"petal length <= 4.95",
"petal width <= 1.65"],

"distribution": [["Iris-versicolor", 47]]
}

Note that the path attribute for the proportional missing strategy shows the path leading to a final unique node,
that gives the prediction, or to the first split where a missing value is found. Other optional attributes are next
which contains the field that determines the next split after the prediction node and distribution that adds the
distribution that leads to the prediction. For regression models, min and max will add the limit values for the data that
supports the prediction.

When your test data has missing values, you can choose between last prediction or proportional strategy
to compute the prediction. The last prediction strategy is the one used by default. To compute a prediction,
the algorithm goes down the model’s decision tree and checks the condition it finds at each node (e.g.: ‘sepal length’ >
2). If the field checked is missing in your input data you have two options: by default (last prediction strategy)
the algorithm will stop and issue the last prediction it computed in the previous node. If you chose proportional
strategy instead, the algorithm will continue to go down the tree considering both branches from that node on. Thus,
it will store a list of possible predictions from then on, one per valid node. In this case, the final prediction will be the
majority (for categorical models) or the average (for regressions) of values predicted by the list of predicted values.

You can set this strategy by using the missingStrategy argument with code 0 to use last prediction and
1 for proportional.

import org.bigml.binding.MissingStrategy;

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localModel.predict(
inputData, MissingStrategy.PROPORTIONAL, null, null, true);

For classification models, it is sometimes useful to obtain a probability or confidence prediction for each possible class
of the objective field. To do this, you can use the predictProbability and predictConfidence methods
respectively. The former gives a prediction based on the distribution of instances at the appropriate leaf node, with a
Laplace correction based on the root node distribution. The latter returns a lower confidence bound on the leaf node
probability based on the Wilson score interval.

Each of these methods take the missingStrategy argument that functions as it does in predict. Note that these
methods substitute the deprecated multiple parameter in the predict method functionallity.

So, for example, the following:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3}");

localModel.predictProbability(inputData);

would result in

[{"prediction": "Iris-setosa",
"probability": 0.0033003300330033},

(continues on next page)

1.6. Local Resources 85

bigml-java Documentation, Release master

(continued from previous page)

{"prediction": "Iris-versicolor",
"probability": 0.4983498349834984},

{"prediction": "Iris-virginica",
"probability": 0.4983498349834984}]

The output of predictConfidence is the same, except that the output maps are keyed with confidence instead
of probability.

For classifications, the prediction of a local model will be one of the available categories in the objective field and an
associated confidence or probability that is used to decide which is the predicted category. If you prefer the
model predictions to be operated using any of them, you can use the operatingKind argument in the predict
method. Here’s the example to use predictions based on confidence:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localModel.predict(inputData, null, null, "confidence", true, null);

Previous versions of the bindings had additional arguments in the predict method that were used to format the
prediction attributes. The signature of the method has been changed to accept only arguments that affect the prediction
itself, (like missingStrategy, operatingKind and opreatingPoint) and full which is a boolean that
controls whether the output is the prediction itself or a dictionary will all the available properties associated to the
prediction.

public Prediction predict(
JSONObject inputData, MissingStrategy missingStrategy,
JSONObject operatingPoint, String operatingKind, Boolean full,
List<String> unusedFields) throws Exception {

...
}

Operating point’s predictions

In classification problems, Models, Ensembles and Logistic Regressions can be used at different operating points,
that is, associated to particular thresholds. Each operating point is then defined by the kind of property you use as
threshold, its value and a the class that is supposed to be predicted if the threshold is reached.

Let’s assume you decide that you have a binary problem, with classes True and False as possible outcomes. Imagine
you want to be very sure to predict the True outcome, so you don’t want to predict that unless the probability
associated to it is over 0,8. You can achieve this with any classification model by creating an operating point:

JSONObject operatingPoint = JSONValue.parseValue(
"{\"kind length\": \"probability\",
\"positive_class width\": \"True\",
\"threshold\": 0.8}");

to predict using this restriction, you can use the operatingPoint parameter:

Prediction prediction = localModel.predict(
inputData, null, operatingPoint, nul, true, null);

where inputData should contain the values for which you want to predict. Local models allow two kinds of
operating points: probability and confidence. For both of them, the threshold can be set to any number in the
[0, 1] range.

86 Chapter 1. Additional Information

bigml-java Documentation, Release master

1.6.2 Local Clusters

You can instantiate a local version of a remote cluster.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalCluster;

BigMLClient api = new BigMLClient();

// Get remote cluster
JSONObject cluster = api.getCluster("cluster/502fdbff15526876610002435");

// Create local cluster
LocalCluster localCluster = new LocalCluster(cluster);

This will retrieve the remote cluster information, using an implicitly built BigML() connection object (see the
Authentication section for more details on how to set your credentials) and return a LocalCluster object
that you can use to make local centroid predictions.

Local clusters provide also methods for the significant operations that can be done using clusters: finding the centroid
assigned to a certain data point, sorting centroids according to their distance to a data point, summarizing the centroids
intra-distances and inter-distances and also finding the closest points to a given one. The Local Centroids and the
Summary generation sections will explain these methods.

Local Centroids

Using the local cluster object, you can predict the centroid associated to an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"pregnancies\": 0, \"plasma glucose\": 118,
\"blood pressure\": 84, \"triceps skin thickness\": 47,
\"insulin\": 230, \"bmi\": 45.8,
\"diabetes pedigree\": 0.551, \"age\": 31,
\"diabetes\": \"true\"}");

JSONObject centroid = localCluster.centroid(inputData);

that will return:

{
"distance": 0.454110207355,
"centroid_name": "Cluster 4",
"centroid_id": "000004"

}

You must keep in mind, though, that to obtain a centroid prediction, input data must have values for all the numeric
fields. No missing values for the numeric fields are allowed unless you provided a default_numeric_value in
the cluster construction configuration. If so, this value will be used to fill the missing numeric fields.

As in the local model predictions, producing local centroids can be done independently of BigML servers, so no cost
or connection latencies are involved.

Another interesting method in the cluster object is localCluster.closestInCluster, which given a refer-
ence data point will provide the rest of points that fall into the same cluster sorted in an ascending order according to
their distance to this point. You can limit the maximum number of points returned by setting the numberOfPoints
argument to any positive integer.

1.6. Local Resources 87

bigml-java Documentation, Release master

JSONObject referencePoint = JSONValue.parseValue(
"{\"pregnancies\": 0, \"plasma glucose\": 118,
\"blood pressure\": 84, \"triceps skin thickness\": 47,
\"insulin\": 230, \"bmi\": 45.8,
\"diabetes pedigree\": 0.551, \"age\": 31,
\"diabetes\": \"true\"}");

JSONObject point = localCluster.closestInCluster(inputData, 2, null);

The response will be a dictionary (JSONObject) with the centroid id of the cluster an the list of closest points and their
distances to the reference point.

{
"closest": [

{"distance": 0.06912270988567025,
"data": {"plasma glucose": "115", "blood pressure": "70",

"triceps skin thickness": "30", "pregnancies": "1",
"bmi": "34.6", "diabetes pedigree": "0.529",
"insulin": "96", "age": "32", "diabetes": "true"}

},
{"distance": 0.10396456577958413,

"data": {"plasma glucose": "167", "blood pressure": "74",
"triceps skin thickness": "17", "pregnancies": "1", "bmi": "23.4",
"diabetes pedigree": "0.447", "insulin": "144", "age": "33",
"diabetes": "true"}

}
],
"reference": {

"age": 31, "bmi": 45.8, "plasma glucose": 118,
"insulin": 230, "blood pressure": 84,
"pregnancies": 0, "triceps skin thickness": 47,
"diabetes pedigree": 0.551, "diabetes": "true"},

"centroid_id": "000000"
}

No missing numeric values are allowed either in the reference data point. If you want the data points to belong to a
different cluster, you can provide the centroid_id for the cluster as an additional argument.

Other utility methods are local_cluster.sortedCentroids which given a reference data point will provide
the list of centroids sorted according to the distance to it

"{\"pregnancies\": 1, \"plasma glucose\": 115,
\"blood pressure\": 70, \"triceps skin thickness\": 30,
\"insulin\": 96, \"bmi\": 34.6,
\"diabetes pedigree\": 0.529, \"age\": 32,
\"diabetes\": \"true\"}");

JSONObject sortedCentroids = localCluster.sortedCentroids(
inputData, 2, null);

that will return:

{
"centroids": [{"distance": 0.31656890408929705,

"data": {"000006": 0.34571, "000007": 30.7619,
"000000": 3.79592, "000008": "false"},

"centroid_id": "000000"},
{"distance": 0.4424198506958207,
"data": {"000006": 0.77087, "000007": 45.50943,

(continues on next page)

88 Chapter 1. Additional Information

bigml-java Documentation, Release master

(continued from previous page)

"000000": 5.90566, "000008": "true"},
"centroid_id": "000001"}],

"reference": {"age": "32", "bmi": "34.6", "plasma glucose": "115",
"insulin": "96", "blood pressure": "70",
"pregnancies": "1", "triceps skin thickness": "30",
"diabetes pedigree": "0.529", "diabetes": "true"}

}

or pointsInCluster that returns the list of data points assigned to a certain cluster, given its centroid_id.

JSONObject points = localCluster.pointsInCluster("000000");

1.6.3 Local AnomalyDetector

You can also instantiate a local version of a remote anomaly.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalAnomaly;

BigMLClient api = new BigMLClient();

// Get remote anomaly
JSONObject anomaly = api.getAnomalyDetector(

"anomaly/502fcbff15526876610002435");

// Create local anomaly detector
LocalAnomaly localAnomaly = new LocalAnomaly(anomaly);

This will retrieve the remote anomaly detector information, using an implicitly built BigML() connection object
(see the Authentication section for more details on how to set your credentials) and return an LocalAnomaly
object that you can use to make local anomaly scores.

The anomaly detector object has also the method filter that will build the LISP filter you would need to filter the
original dataset and create a new one excluding the top anomalies. Setting the include parameter to True you can
do the inverse and create a dataset with only the most anomalous data points.

Local Anomaly Scores

Using the local anomaly detector object, you can predict the anomaly score associated to an input data set:

JSONObject inputData = JSONValue.parseValue("{\"src_bytes\": 350}");
double score = localAnomaly.score(inputData);

0.9268527808726705

As in the local model predictions, producing local anomaly scores can be done independently of BigML servers, so
no cost or connection latencies are involved.

1.6.4 Local Logistic Regression

You can also instantiate a local version of a remote logistic regression.

1.6. Local Resources 89

bigml-java Documentation, Release master

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalLogisticRegression;

BigMLClient api = new BigMLClient();

// Get remote logistic regression
JSONObject logistic = api.getLogisticRegression(

"logisticregression/502fdbff15526876610042435");

// Create local logistic regression
LocalLogisticRegression localLogisticRegression =

new LocalLogisticRegression(logistic);

This will retrieve the remote logistic regression information, using an implicitly built BigML() connection
object (see the Authentication section for more details on how to set your credentials) and return a
LocalLogisticRegression object that you can use to make local predictions.

Local Logistic Regression Predictions

Using the local logistic regression object, you can predict the prediction for an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 2, \"sepal length\": 1.5,
\"petal width\": 0.5, \"sepal width\": 0.7}");

localLogisticRegression.predict(inputData, null, null, true);

that will return:

{
"distribution": [

{"category": "Iris-virginica", "probability": 0.5041444478857267},
{"category": "Iris-versicolor", "probability": 0.46926542042788333},
{"category": "Iris-setosa", "probability": 0.02659013168639014}

],
"prediction": "Iris-virginica",
"probability": 0.5041444478857267

}

As you can see, the prediction contains the predicted category and the associated probability. It also shows the
distribution of probabilities for all the possible categories in the objective field.

You must keep in mind, though, that to obtain a logistic regression prediction, input data must have values for all the
numeric fields. No missing values for the numeric fields are allowed.

For consistency of interface with the LocalPredictiveModelModel class, logistic regressions again have
a predictProbability method. As stated above, missing values are not allowed, and so there is no
missingStrategy argument.

Operating point predictions are also available for local logistic regressions and an example of it would be:

JSONObject operatingPoint = JSONValue.parseValue(
"{\"kind length\": \"probability\",
\"positive_class width\": \"True\",
\"threshold\": 0.8}");

localLogisticRegression.predict(inputData, operatingPoint, null, true);

90 Chapter 1. Additional Information

bigml-java Documentation, Release master

You can check the Operating point’s predictions section to learn about operating points. For logistic regressions, the
only available kind is probability, that sets the threshold of probability to be reached for the prediction to be the
positive class.

1.6.5 Local Linear Regression

You can also instantiate a local version of a remote linear regression.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalinearRegression;

BigMLClient api = new BigMLClient();

// Get remote linear regression
JSONObject linear = api.getLinearRegression(

"linearregression/502fdbff15526876610042435");

// Create local linear regression
LocalLinearRegression localLinearRegression =

new LocalLinearRegression(linear);

This will retrieve the remote logistic regression information, using an implicitly built BigML() connection
object (see the Authentication section for more details on how to set your credentials) and return a
LocalLinearRegression object that you can use to make local predictions.

Local Linear Regression Predictions

Using the local linear regression object, you can predict the prediction for an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 2, \"sepal length\": 1.5,
\"petal width\": 0.5, \"sepal width\": 0.7}");

localLinearRegression.predict(inputData, true);

that will return:

{
"prediction": -4.2168344

}

To obtain a linear regression prediction, input data can only have missing values for fields that had already some
missings in training data.

1.6.6 Local Deepnet

You can also instantiate a local version of a remote Deepnet.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalDeepnet;

BigMLClient api = new BigMLClient();

(continues on next page)

1.6. Local Resources 91

bigml-java Documentation, Release master

(continued from previous page)

// Get remote deepnet
JSONObject deepnet = api.getDeepnet(

"deepnet/502fdbff15526876610022435");

// Create local deepnet
LocalDeepnet localDeepnet = new LocalDeepnet(deepnet);

This will retrieve the remote deepnet information, using an implicitly built BigML() connection object (see the
Authentication section for more details on how to set your credentials) and return a LocalDeepnet object
that you can use to make local predictions.

Local Deepnet Predictions

Using the local deepnet object, you can predict the prediction for an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 2, \"sepal length\": 1.5,
\"petal width\": 0.5, \"sepal width\": 0.7}");

localDeepnet.predict(inputData, null, null, true);

that will return:

{
"distribution": [

{"category": "Iris-virginica", "probability": 0.5041444478857267},
{"category": "Iris-versicolor", "probability": 0.46926542042788333},
{"category": "Iris-setosa", "probability": 0.02659013168639014}

],
"prediction": "Iris-virginica",
"probability": 0.5041444478857267

}

As you can see, the full prediction contains the predicted category and the associated probability. It also shows the
distribution of probabilities for all the possible categories in the objective field.

To be consistent with the LocalPredictiveModelModel class interface, deepnets have also a
predictProbability method.

Operating point predictions are also available for local deepnets and an example of it would be:

JSONObject operatingPoint = JSONValue.parseValue(
"{\"kind length\": \"probability\",
\"positive_class width\": \"True\",
\"threshold\": 0.8}");

localDeepnet.predict(inputData, operatingpoint, null, true);

1.6.7 Local Fusion

You can also instantiate a local version of a remote Fusion.

92 Chapter 1. Additional Information

bigml-java Documentation, Release master

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalFusion;

BigMLClient api = new BigMLClient();

// Get remote fusion
JSONObject fusion = api.getFusion(

"fusion/502fdbff15526876610022438");

// Create local fusion
LocalFusion localFusion = new LocalFusion(fusion);

This will retrieve the remote deepnet information, using an implicitly built BigML() connection object (see the
Authentication section for more details on how to set your credentials) and return a LocalFusion object that
you can use to make local predictions.

Local Fusion Predictions

Using the local fusion object, you can predict the prediction for an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 2, \"sepal length\": 1.5,
\"petal width\": 0.5, \"sepal width\": 0.7}");

localFusion.predict(inputData, null, null, true);

that will return:

{
"prediction": "Iris-setosa",
"probability": 0.45224

}

As you can see, the full prediction contains the predicted category and the associated probability.

To be consistent with the ocalPredictiveModel class interface, fusions have also a predict_probability
method.

Operating point predictions are also available with probability as threshold for local fusions and an example of it would
be:

JSONObject operatingPoint = JSONValue.parseValue(
"{\"kind length\": \"probability\",
\"positive_class width\": \"True\",
\"threshold\": 0.8}");

localFusion.predict(inputData, operatingpoint, null, true);

1.6.8 Local Association

You can also instantiate a local version of a remote association resource.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalAssociation;

(continues on next page)

1.6. Local Resources 93

bigml-java Documentation, Release master

(continued from previous page)

BigMLClient api = new BigMLClient();

// Get remote association
JSONObject association = api.getAssociation(

"association/502fdcff15526876610002435");

// Create local association
LocalAssociation localAssociation = new LocalAssociation(association);

This will retrieve the remote association information, using an implicitly built BigML() connection object (see the
Authentication section for more details on how to set your credentials) and return an LocalAssociation
object that you can use to extract the rules found in the original dataset.

The created LocalAssociation object has some methods to help retrieving the association rules found in the
original data. The rules method will return the association rules. Arguments can be set to filter the rules returned
according to its leverage, strength, support, p_value, a list of items involved in the rule or a user-given
filter function.

List itemList = new ArrayList();
itemList.add("Edible");
localAssociation.rules(null, null, 0.3, itemList, null);

In this example, the only rules that will be returned by the rules method will be the ones that mention Edible and
their p_value is greater or equal to 0.3.

The rules can also be stored in a CSV file using rulesCsv:

List itemList = new ArrayList();
itemList.add("Edible");
localAssociation.rulesCsv(

"/tmp/my_rules.csv", null, null, 0.3, itemList, null);

This example will store the rules whose strength is bigger or equal to 0.1 in the /tmp/my_rules.csv file.

You can also obtain the list of items parsed in the dataset using the items method. You can also filter the results by
field name, by item names and by a user-given function:

List names = new ArrayList();
names.add("Brown cap");
names.add("White cap");
names.add("Yellow cap");
localAssociation.items("Cap Color", names, null, null);

This will recover the Item objects found in the Cap Color field for the names in the list, with their properties as
described in the developers section.

Local Association Sets

Using the local association object, you can predict the association sets related to an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"gender\": \"Female\", \"genres\": \"Adventure$Action\",
\"timestamp\": 993906291, \"occupation\": \"K-12 student\",
\"zipcode\": 59583, \"rating\": 3}");

localAssociation.associationSet(inputData, null, null);

94 Chapter 1. Additional Information

https://bigml.com/api/associations#ad_retrieving_an_association

bigml-java Documentation, Release master

that returns

[
{"item": {"complement": False,

"count": 70,
"field_id": "000002",
"name": "Under 18"},

"rules": ["000000"],
"score": 0.0969181441561211},

{"item": {"complement": False,
"count": 216,
"field_id": "000007",
"name": "Drama"},

"score": 0.025050115102862636},
{"item": {"complement": False,

"count": 108,
"field_id": "000007",
"name": "Sci-Fi"},

"rules": ["000003"],
"score": 0.02384578264599424},

{"item": {"complement": False,
"count": 40,
"field_id": "000002",
"name": "56+"},

"rules": ["000008",
"000020"],

"score": 0.021845366022721312},
{"item": {"complement": False,

"count": 66,
"field_id": "000002",
"name": "45-49"},

"rules": ["00000e"],
"score": 0.019657155185835006}

]

As in the local model predictions, producing local association sets can be done independently of BigML servers, so
no cost or connection latencies are involved.

1.6.9 Local Topic Model

You can also instantiate a local version of a remote topic model.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalTopicModel;

BigMLClient api = new BigMLClient();

// Get remote topicModel
JSONObject topicModel = api.getTopicModel(

"topicmodel/502fdbcf15526876210042435");

// Create local topicModel
LocalTopicModel localTopicModel = new LocalTopicModel(topicModel);

This will retrieve the remote topic model information, using an implicitly built BigML() connection object (see the
Authentication section for more details on how to set your credentials) and return a LocalTopicModel object
that you can use to obtain local topic distributions.

1.6. Local Resources 95

bigml-java Documentation, Release master

Local Topic Distributions

Using the local topic model object, you can predict the local topic distribution for an input data set:

JSONObject inputData = JSONValue.parseValue(
"{\"Message\": \"Our mobile phone is free\"}");

localTopicModel.distribution(inputData);

that returns

[
{"name": "Topic 00", "probability": 0.002627154266498529},
{"name": "Topic 01", "probability": 0.003257671290458176},
{"name": "Topic 02", "probability": 0.002627154266498529},
{"name": "Topic 03", "probability": 0.1968263976460698},
{"name": "Topic 04", "probability": 0.002627154266498529},
{"name": "Topic 05", "probability": 0.002627154266498529},
{"name": "Topic 06", "probability": 0.13692728036990331},
{"name": "Topic 07", "probability": 0.6419714165615805},
{"name": "Topic 08", "probability": 0.002627154266498529},
{"name": "Topic 09", "probability": 0.002627154266498529},
{"name": "Topic 10", "probability": 0.002627154266498529},
{"name": "Topic 11", "probability": 0.002627154266498529}

]

As you can see, the topic distribution contains the name of the possible topics in the model and the associated proba-
bilities.

1.6.10 Local Time Series

You can also instantiate a local version of a remote time series.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalTimeSeries;

BigMLClient api = new BigMLClient();

// Get remote timeSeries
JSONObject timeSeries = api.getTimeSeries(

"timeseries/502fdbcf15526876210042435");

// Create local timeSeries
LocalTimeSeries localTimeSeries = new LocalTimeSeries(timeSeries);

This will create a series of models from the remote time series information, using an implicitly built BigML()
connection object (see the Authentication section for more details on how to set your credentials) and return a
LocalTimeSeries object that you can use to obtain local forecasts.

Local Forecasts

Using the local time series object, you can forecast any of the objective field values:

96 Chapter 1. Additional Information

bigml-java Documentation, Release master

JSONObject inputData = JSONValue.parseValue(
"{\"Final\": {\"horizon\": 5},
\"Assignment\": {\"horizon\": 10, \"ets_models\": {\"criterion\": \"aic\", \

→˓"limit\": 2}}}");
localTimeSeries.forecast(inputData);

that returns

{
"000005": [

{"point_forecast": [68.53181, 68.53181, 68.53181, 68.53181, 68.53181],
"model": "A,N,N"}],

"000001": [{"point_forecast": [54.776650000000004, 90.00943000000001,
83.59285000000001, 85.72403000000001,
72.87196, 93.85872, 84.80786, 84.65522,
92.52545, 88.78403],

"model": "A,N,A"},
{"point_forecast": [55.882820120000005, 90.5255466567616,

83.44908577909621, 87.64524353046498,
74.32914583152592, 95.12372848262932,
86.69298716626228, 85.31630744944385,
93.62385478607113, 89.06905451921818],

"model": "A,Ad,A"}]
}

As you can see, the forecast contains the ID of the forecasted field, the computed points and the name of the models
meeting the criterion. For more details about the available parameters, please check the API documentation.

1.6.11 Multi Models

Multi Models use a numbers of BigML remote models to build a local version that can be used to generate predictions
locally. Predictions are generated combining the outputs of each model.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.MultiModel;

BigMLClient api = new BigMLClient();

JSONArray models = (JSONArray) api.listModels(
";tags__in=my_tag").get("objects");

MultiModel multiModel = new MultiModel(models, null, null);

This will create a multi model using all the models that have been previously tagged with my_tag and predict by com-
bining each model’s prediction. The combination method used by default is plurality for categorical predictions
and mean value for numerical ones. You can also use confidence weighted:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

multiModel.predict(inputData, null, PredictionMethod.PLURALITY, null);

that will weight each vote using the confidence/error given by the model to each prediction, or even probability
weighted:

1.6. Local Resources 97

https://bigml.com/api/forecasts

bigml-java Documentation, Release master

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

multiModel.predict(inputData, null, PredictionMethod.PROBABILITY, null);

that weights each vote by using the probability associated to the training distribution at the prediction node.

There’s also a threshold method that uses an additional set of options: threshold and category. The category is
predicted if and only if the number of predictions for that category is at least the threshold value. Otherwise, the
prediction is plurality for the rest of predicted values.

An example of threshold combination method would be:

Map options = new HashMap();
options.put("threshold", 3);
options.put("category", "Iris-virginica");
JSONObject inputData = JSONValue.parseValue(

"{\"petal length\": 0.9, \"petal width\": 1}");
multiModel.predict(inputData, null, PredictionMethod.THRESHOLD, options);

When making predictions on a test set with a large number of models, batch_predict can be useful to log each
model’s predictions in a separated file. It expects a list of input data values and the directory path to save the prediction
files in.

JSONArray inputDataList = JSONValue.parseValue(
"[{\"petal length\": 3, \"petal width\": 1},
{\"petal length\": 3, \"petal width\": 5.1}]");

multiModel.batchPredict(inputDataList, "data/predictions");

The predictions generated for each model will be stored in an output file in data/predictions
using the syntax model_[id of the model]__predictions.csv. For instance, when
using model/50c0de043b563519830001c2 to predict, the output file name will be
model_50c0de043b563519830001c2__predictions.csv. An additional feature is that using
reuse=True as argument will force the function to skip the creation of the file if it already exists. This can
be helpful when using repeatedly a bunch of models on the same test set.

JSONArray inputDataList = JSONValue.parseValue(
"[{\"petal length\": 3, \"petal width\": 1},
{\"petal length\": 3, \"petal width\": 5.1}]");

multiModel.batchPredict(
inputDataList, "data/predictions", true, null, null, null, null);

Prediction files can be subsequently retrieved and converted into a votes list using batchVotes:

List<MultiVote> batchVotes = multiModel.batchVotes(
"data/predictions", null);

which will return a list of MultiVote objects. Each MultiVote contains a list of predictions, e.g.

[
{"prediction": "Iris-versicolor", "confidence": 0.34, "order": 0}, {"prediction":

→˓"Iris-setosa", "confidence": 0.25, "order": 1}
]

These votes can be further combined to issue a final prediction for each input data element using the method combine

for (MultiVote multiVote: batchVotes) {
HashMap<Object, Object> prediction = multivote.combine();

}

98 Chapter 1. Additional Information

bigml-java Documentation, Release master

Again, the default method of combination is plurality for categorical predictions and mean value for numerical
ones. You can also use confidence weighted:

HashMap<Object, Object> prediction = multivote.combine(
PredictionMethod.CONFIDENCE, null);

or probability weighted:

HashMap<Object, Object> prediction = multivote.combine(
PredictionMethod.PROBABILITY, null);

For classification, the confidence associated to the combined prediction is derived by first selecting the model’s pre-
dictions that voted for the resulting prediction and computing the weighted average of their individual confidence.
Nevertheless, when probability weighted is used, the confidence is obtained by using each model’s distribu-
tion at the prediction node to build a probability distribution and combining them. The confidence is then computed
as the wilson score interval of the combined distribution (using as total number of instances the sum of all the model’s
distributions original instances at the prediction node)

In regression, all the models predictions’ confidences contribute to the weighted average confidence.

1.6.12 Local Ensembles

You can also instantiate a local version of a remote ensemble resource.

import org.bigml.binding.BigMLClient;
import org.bigml.binding.LocalEnsemble;

BigMLClient api = new BigMLClient();

// Get remote ensemble
JSONObject ensemble = api.getEnsemble(

"ensemble/5143a51a37203f2cf7020351");

// Create local ensemble
LocalEnsemble localEnsemble = new LocalEnsemble(ensemble);

The local ensemble object can be used to manage the three types of ensembles: Decision Forests (bagging or
random) and the ones using Boosted Trees.

The operatingKind argument overrides the legacy method argument, which was previously used to define the
combiner for the models predictions.

Similarly, local ensembles can also be created by giving a list of models to be combined to issue the final prediction
(note: only random decision forests and bagging ensembles can be built using this method):

import org.bigml.binding.LocalEnsemble;
List models = new ArrayList();
models.add("model/50c0de043b563519830001c2");
models.add("model/50c0de043b5635198300031b");
LocalEnsemble localEnsemble = new LocalEnsemble(models, 10);

Note: the ensemble JSON structure is not self-contained, meaning that it contains references to the models that the
ensemble is build of, but not the information of the models themselves. To use an ensemble locally with no connec-
tion to the internet, you must make sure that not only a local copy of the ensemble JSON file is available in your
computer, but also the JSON files corresponding to the models in it. This is automatically achieved when you use

1.6. Local Resources 99

bigml-java Documentation, Release master

the LocalEnsemble(ensemble) constructor, that fetches all the related JSON files and stores them in an ./
storage directory. Next calls to Ensemble(ensemble) will retrieve the files from this local storage, so that
internet connection will only be needed the first time an LocalEnsemble is built.

On the contrary, if you have no memory limitations and want to increase prediction speed, you can create the ensemble
from a list of local model objects. Then, local model objects will only be instantiated once, and this could increase
performance for large ensembles.

1.6.13 Local Ensemble’s Predictions

As in the local model’s case, you can use the local ensemble to create new predictions for your test data, and set some
arguments to configure the final output of the predict method.

The predictions’ structure will vary depending on the kind of ensemble used. For Decision Forests local pre-
dictions will just contain the ensemble’s final prediction if no other argument is used.

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localEnsemble.predict(inputData, null, null, null, null, false)

returns

Iris-versicolor

The final prediction of an ensemble is determined by aggregating or selecting the predictions of the individual mod-
els therein. For classifications, the most probable class is returned if no especial operating method is set. Using
full=True you can see both the predicted output and the associated probability:

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localEnsemble.predict(inputData, null, null, null, null, null, true, null)

returns

{
"prediction": "Iris-versicolor",
"probability": 0.98566

}

In general, the prediction in a classification will be one amongst the list of categories in the objective field. When
each model in the ensemble is used to predict, each category has a confidence, a probability or a vote associated to
this prediction. Then, through the collection of models in the ensemble, each category gets an averaged confidence,
probabiity and number of votes. Thus you can decide whether to operate the ensemble using the confidence, the
probability or the votes so that the predicted category is the one that scores higher in any of these quantities.
The criteria can be set using the operatingKind option (default is set to probability):

JSONObject inputData = JSONValue.parseValue(
"{\"petal length\": 3, \"petal width\": 1}");

localEnsemble.predict(
inputData, null, null, null, null, "votes", true, null);

Regression will generate a predictiona and an associated error, however Boosted Trees don’t have an associated
confidence measure, so only the prediction will be obtained in this case.

100 Chapter 1. Additional Information

bigml-java Documentation, Release master

For consistency of interface with the LocalPredictiveModelModel class, as well as between boosted and non-
boosted ensembles, local Ensembles again have a predictProbability method. This takes the same optional
arguments as LocalPredictiveModelModel.predict: missingStrategy.

Operating point predictions are also available for local ensembles and an example of it would be:

JSONObject operatingPoint = JSONValue.parseValue(
"{\"kind length\": \"probability\",
\"positive_class width\": \"True\",
\"threshold\": 0.8}");

localEnsemble.predict(
inputData, null, null, null, operatingPoint, null, true, null)

You can check the Operating point’s predictions section to learn about operating points. For ensembles, three kinds of
operating points are available: votes, probability and confidence. Votes will use as threshold the number
of models in the ensemble that vote for the positive class. The other two are already explained in the above mentioned
section.

1.6.14 Rule Generation

You can also use a local predictive model to generate a IF-THEN rule set that can be very helpful to understand how
the model works internally.

localModel.rules();

IF petal_length > 2.45 AND
IF petal_width > 1.75 AND

IF petal_length > 4.85 THEN
species = Iris-virginica

IF petal_length <= 4.85 AND
IF sepal_width > 3.1 THEN

species = Iris-versicolor
IF sepal_width <= 3.1 THEN

species = Iris-virginica
IF petal_width <= 1.75 AND

IF petal_length > 4.95 AND
IF petal_width > 1.55 AND

IF petal_length > 5.45 THEN
species = Iris-virginica

IF petal_length <= 5.45 THEN
species = Iris-versicolor

IF petal_width <= 1.55 THEN
species = Iris-virginica

IF petal_length <= 4.95 AND
IF petal_width > 1.65 THEN

species = Iris-virginica
IF petal_width <= 1.65 THEN

species = Iris-versicolor
IF petal_length <= 2.45 THEN

species = Iris-setosa

1.6.15 Summary generation

1.6. Local Resources 101

bigml-java Documentation, Release master

You can also print the model from the point of view of the classes it predicts with localModel.summarize().
It shows a header section with the training data initial distribution per class (instances and percentage) and the final
predicted distribution per class.

Then each class distribution is detailed. First a header section shows the percentage of the total data that belongs to
the class (in the training set and in the predicted results) and the rules applicable to all the the instances of that class
(if any). Just after that, a detail section shows each of the leaves in which the class members are distributed. They are
sorted in descending order by the percentage of predictions of the class that fall into that leaf and also show the full
rule chain that leads to it.

Data distribution:
Iris-setosa: 33.33% (50 instances)
Iris-versicolor: 33.33% (50 instances)
Iris-virginica: 33.33% (50 instances)

Predicted distribution:
Iris-setosa: 33.33% (50 instances)
Iris-versicolor: 33.33% (50 instances)
Iris-virginica: 33.33% (50 instances)

Field importance:
1. petal length: 53.16%
2. petal width: 46.33%
3. sepal length: 0.51%
4. sepal width: 0.00%

Iris-setosa : (data 33.33% / prediction 33.33%) petal length <= 2.45
· 100.00%: petal length <= 2.45 [Confidence: 92.86%]

Iris-versicolor : (data 33.33% / prediction 33.33%) petal length > 2.45
· 94.00%: petal length > 2.45 and petal width <= 1.65 and petal length <= 4.

→˓95 [Confidence: 92.44%]
· 2.00%: petal length > 2.45 and petal width <= 1.65 and petal length > 4.95

→˓and sepal length <= 6.05 and petal width > 1.55 [Confidence: 20.65%]
· 2.00%: petal length > 2.45 and petal width > 1.65 and petal length <= 5.05

→˓and sepal width > 2.9 and sepal length > 6.4 [Confidence: 20.65%]
· 2.00%: petal length > 2.45 and petal width > 1.65 and petal length <= 5.05

→˓and sepal width > 2.9 and sepal length <= 6.4 and sepal length <= 5.95 [Confidence:
→˓20.65%]

Iris-virginica : (data 33.33% / prediction 33.33%) petal length > 2.45
· 76.00%: petal length > 2.45 and petal width > 1.65 and petal length > 5.05

→˓[Confidence: 90.82%]
· 12.00%: petal length > 2.45 and petal width > 1.65 and petal length <= 5.05

→˓and sepal width <= 2.9 [Confidence: 60.97%]
· 6.00%: petal length > 2.45 and petal width <= 1.65 and petal length > 4.95

→˓and sepal length > 6.05 [Confidence: 43.85%]
· 4.00%: petal length > 2.45 and petal width > 1.65 and petal length <= 5.05

→˓and sepal width > 2.9 and sepal length <= 6.4 and sepal length > 5.95 [Confidence:
→˓34.24%]

· 2.00%: petal length > 2.45 and petal width <= 1.65 and petal length > 4.95
→˓and sepal length <= 6.05 and petal width <= 1.55 [Confidence: 20.65%]

You can also use localModel.getDataDistribution() and local_model.
getPredictionDistribution() to obtain the training and prediction basic distribution information as a list
(suitable to draw histograms or any further processing). The tree nodes’ information (prediction, confidence, impurity
and distribution) can also be retrieved in a CSV format using the method localModel.exportTreeCSV(). The
output can be sent to a file by providing a outputFilePath argument or used as a list.

102 Chapter 1. Additional Information

bigml-java Documentation, Release master

Local ensembles have a localEnsemble.summarize() method too, the output in this case shows only the data
distribution (only available in Decision Forests) and field importance sections.

For local clusters, the localCluster.summarize() method prints also the data distribution, the train-
ing data statistics per cluster and the basic intercentroid distance statistics. There’s also a localCluster.
statisticsCsv(file_name) method that store in a CSV format the values shown by the summarize()
method. If no file name is provided, the function returns the rows that would have been stored in the file as a list.

1.7 Running the tests

There is a test suite using Cucumber available, you may want to run it by execute:

$ mvn test

or this way, if you want to debug the tests

$ mvn -Dmaven.surefire.debug="-Xdebug -Xrunjdwp:transport=dt_socket,server=y,
→˓suspend=y,address=8000 -Xnoagent -Djava.compiler=NONE" test

or this way, if you want run an specific feature

$ mvn test -Dcucumber.options="--glue classpath:org.bigml.binding --format pretty src/
→˓test/resources/test_01_prediction.feature"

1.7. Running the tests 103

http://cukes.info/

	Additional Information
	Introduction
	Quick Start
	Fields Structure
	Resources
	Whizzml Resources
	Local Resources
	Running the tests

